样本示意,为kdd99数据源:

0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.01,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,255,1.00,0.00,0.01,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,udp,domain_u,SF,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0.00,0.00,0.00,0.00,0.50,1.00,0.00,10,3,0.30,0.30,0.30,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,253,0.99,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,tcp,http,SF,223,185,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,4,0.00,0.00,0.00,0.00,1.00,0.00,0.00,71,255,1.00,0.00,0.01,0.01,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,tcp,http,SF,230,260,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,19,0.00,0.00,0.00,0.00,1.00,0.00,0.11,3,255,1.00,0.00,0.33,0.07,0.33,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.01,0.00,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,252,0.99,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
1,tcp,smtp,SF,3170,329,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,2,0.00,0.00,0.00,0.00,1.00,0.00,1.00,54,39,0.72,0.11,0.02,0.00,0.02,0.00,0.09,0.13,normal.
0,tcp,http,SF,297,13787,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,177,255,1.00,0.00,0.01,0.01,0.00,0.00,0.00,0.00,normal.
0,tcp,http,SF,291,3542,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,12,0.00,0.00,0.00,0.00,1.00,0.00,0.00,187,255,1.00,0.00,0.01,0.01,0.00,0.00,0.00,0.00,normal.
0,tcp,http,SF,295,753,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,21,22,0.00,0.00,0.00,0.00,1.00,0.00,0.09,196,255,1.00,0.00,0.01,0.01,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.01,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,tcp,http,SF,268,9235,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,5,5,0.00,0.00,0.00,0.00,1.00,0.00,0.00,58,255,1.00,0.00,0.02,0.05,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,253,0.99,0.01,0.00,0.00,0.00,0.00,0.00,0.00,snmpgetattack.
0,tcp,http,SF,223,185,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,3,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,tcp,http,SF,227,8841,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,13,13,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,tcp,http,SF,222,19564,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,22,23,0.00,0.00,0.00,0.00,1.00,0.00,0.09,255,255,1.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,tcp,ftp_data,SF,740,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,77,33,0.34,0.08,0.34,0.06,0.00,0.00,0.00,0.00,normal.
0,udp,private,SF,105,146,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,255,254,1.00,0.01,0.00,0.00,0.00,0.00,0.00,0.00,normal.
0,tcp,ftp_data,SF,35195,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,10,0.00,0.00,0.00,0.00,1.00,0.00,0.00,92,44,0.43,0.07,0.43,0.05,0.00,0.00,0.00,0.00,normal.
0,tcp,ftp_data,SF,8325,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0.00,0.00,0.00,0.00,1.00,0.00,0.00,103,54,0.49,0.06,0.49,0.04,0.00,0.00,0.00,0.00,normal.

代码:

# -*- coding:utf-8 -*-

import re
import matplotlib.pyplot as plt
import os
from sklearn.feature_extraction.text import CountVectorizer
from sklearn import preprocessing
from sklearn import cross_validation
import os
from sklearn.datasets import load_iris
from sklearn import tree
import pydotplus
from sklearn.preprocessing import LabelEncoder
import numpy as np
import pandas as pd
from sklearn_pandas import DataFrameMapper def label(x):
if x == "normal.":
return 0
else:
return 1 if __name__ == '__main__':
data = pd.read_csv('../data/kddcup99/corrected', sep=",", header=None)
print data.columns
print data.iloc[0,0], data.iloc[0,1]
print len(data)
col_cnt = len(data.columns) normal = data.loc[data.loc[:, col_cnt-1] == "normal.", :]
print "normal len:", len(normal)
guess = data.loc[data.loc[:, col_cnt-1] == "guess_passwd.", :]
print "normal len:", len(guess) data = pd.concat([normal, guess])
print len(data) le = preprocessing.LabelEncoder()
for i in range(col_cnt-1):
if isinstance(data.iloc[0,i], str):
print "tranform string column only:", i
data.loc[:,i] = le.fit_transform(data.loc[:,i])
data.loc[:,col_cnt-1] = data.loc[:,col_cnt-1].apply(label)
print data.iloc[0,0], data.iloc[0,1]
x = data.iloc[:, range(col_cnt-1)]
#x = data.iloc[:, [0,4,5,6,7,8,22,23,24,25,26,27,28,29,30]]
y = data.iloc[:, col_cnt-1]
  
''' also OK
    data = data.as_matrix()
    x = data[:, range(col_cnt-1)]
    y = data[:, col_cnt-1]
'''
print "x=>"
print x.iloc[0:3, :]
print "y=>"
print y[-3:]
#v=load_kdd99("../data/kddcup99/corrected")
#x,y=get_guess_passwdandNormal(v)
clf = tree.DecisionTreeClassifier()
clf = clf.fit(x, y)
print clf print cross_validation.cross_val_score(clf, x, y, n_jobs=-1, cv=10) clf = clf.fit(x, y)
dot_data = tree.export_graphviz(clf, out_file=None)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_pdf("../photo/6/iris-dt.pdf")

结果:

Int64Index([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41],
dtype='int64')
0 udp
311029
normal len: 60593
normal len: 4367
64960
tranform string column only: 1
tranform string column only: 2
tranform string column only: 3
0 2
x=>
0 1 2 3 4 5 6 7 8 9 ... 31 32 33 34 35 \
0 0 2 15 7 105 146 0 0 0 0 ... 255 254 1.0 0.01 0.0
1 0 2 15 7 105 146 0 0 0 0 ... 255 254 1.0 0.01 0.0
2 0 2 15 7 105 146 0 0 0 0 ... 255 254 1.0 0.01 0.0 36 37 38 39 40
0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 [3 rows x 41 columns]
y=>
142098 1
142099 1
142101 1
Name: 41, dtype: int64
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best')
fg[ 0.9561336 0.99892258 0.99938433 0.99984606 0.99984606 0.99969212
1. 0.99984604 0.99969207 1. ]

pandas dataframe 做机器学习训练数据=》直接使用iloc或者as_matrix即可的更多相关文章

  1. python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix

    先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3) ...

  2. pandas.DataFrame.quantile

    pandas.DataFrame.quantile 用于返回数据中的 处于1/5    1/2(中位数)等数据

  3. 机器学习之数据预处理,Pandas读取excel数据

    Python读写excel的工具库很多,比如最耳熟能详的xlrd.xlwt,xlutils,openpyxl等.其中xlrd和xlwt库通常配合使用,一个用于读,一个用于写excel.xlutils结 ...

  4. 如何通过Elasticsearch Scroll快速取出数据,构造pandas dataframe — Python多进程实现

    首先,python 多线程不能充分利用多核CPU的计算资源(只能共用一个CPU),所以得用多进程.笔者从3.7亿数据的索引,取200多万的数据,从取数据到构造pandas dataframe总共大概用 ...

  5. Pandas DataFrame数据的增、删、改、查

    Pandas DataFrame数据的增.删.改.查 https://blog.csdn.net/zhangchuang601/article/details/79583551 #删除列 df_2 = ...

  6. Pandas DataFrame 数据选取和过滤

    This would allow chaining operations like: pd.read_csv('imdb.txt') .sort(columns='year') .filter(lam ...

  7. pandas.DataFrame——pd数据框的简单认识、存csv文件

    接着前天的豆瓣书单信息爬取,这一篇文章看一下利用pandas完成对数据的存储. 回想一下我们当时在最后得到了六个列表:img_urls, titles, ratings, authors, detai ...

  8. pandas中DataFrame和Series的数据去重

    在SQL语言中去重是一件相当简单的事情,面对一个表(也可以称之为DataFrame)我们对数据进行去重只需要GROUP BY 就好. select custId,applyNo from tmp.on ...

  9. 用PyQt5来即时显示pandas Dataframe的数据,附qdarkstyle黑夜主题样式(美美哒的黑夜主题)

    import sys from qdarkstyle import load_stylesheet_pyqt5 from PyQt5.QtWidgets import QApplication, QT ...

随机推荐

  1. Reentrant protected mode kernel using virtual 8086 mode interrupt service routines

    A method for allowing a protected mode kernel to service, in virtual 8086 mode, hardware interrupts ...

  2. 【剑指offer】Q31:连续子数组的组大和

    简短的分析见:http://blog.csdn.net/shiquxinkong/article/details/17934747 def FindGreatestSumOfSubArray(arra ...

  3. cocos2d-js 热更新具体解释(一)

    本文将会具体解说cocos2d-js下的热更新机制.这篇内容先给大家介绍一下两个manifest文件就当热身了. 首先介绍project.manifest:  举个样例 { "package ...

  4. 中科燕园arcgis外包案例之12---供水供热管线GIS系统

    项目背景 绍兴县是浙江省第一个"数字城管"试点城市,也是全国第一个"数字城管"县级城市.随着经济的飞速发展.城市化步伐的加快,以及城市规模的扩大和现代化程度的不 ...

  5. 【Oracle学习笔记】

    内容主要包括: (1)三种循环及其简化 (2)游标的使用 (3)异常处理 (4)存储过程 (5)存储函数 (6)触发器 (7)其它pl/sql操作 ---------------loop循环定义变量- ...

  6. Spring整合Shiro从源代码探究机制

    首先从例如以下配置開始说起 ShiroDbFilterFactoryBean继承了ShiroFilterFactoryBean这个由jar提供的bean类, 而且它实现了InitializingBea ...

  7. chrome控制台常用技巧有哪些

    chrome控制台常用技巧有哪些 一.总结 一句话总结:别的里面支持的快捷键,chrome里面几乎都支持,比如sublime中的ctrl+d,其实真是一通百通,都差不多的 1.chrome如何快速切换 ...

  8. crontab任务调度

    基本语法 crontab [选项] 选项: -e:    编辑crontab定时任务 -l:    查询crontab任务 -r:    删除当前用户所有的crontab任务 2)参数说明 [root ...

  9. sql 查询所有数据库-表-表结构

    --查询数据库中的所有数据库名: SELECT * FROM Master..SysDatabases ORDER BY Name --查询某个数据库中所有的表名: select * from sys ...

  10. SpringBoot(二) 主程序详解和配置文件如何配置

    SpringBoot主程序详解 /** * @SpringBootApplication 来标注一个主程序类,说明这是一个Spring Boot应用 */ @SpringBootApplication ...