1009: [HNOI2008]GT考试

题目:传送门

题解:

   看这第一眼是不是瞬间想起组合数学???

   没错...这样想你就GG了!

   其实这是一道稍有隐藏的矩阵乘法,好题!

   首先我们可以简化一下题意:给出一个串,要求这个串不包含另一个串的方案个数

   这不是kmp吗?!(直接暴力肯定炸)

   我们可以再往DP的方面想

   f[i][j]表示长度为i的母串的后缀与子串匹配j个长度的方案数

   那么ans=Sigma(f[n][0]~f[n][m-1])

   那么我们再定义一个c[i][j]表示在子串长度为i的前缀后面加上一个数,令该前缀加上这个数所组成的新字符串与给出子串从头开始所能匹配的长度为j的方案数

   那么f[i+1][k]=f[i][j]*c[j][k]

   但是还是会炸啊!!!!!!!

   这时候怎么就想不到矩乘加速呢?!

   c数组不变,而且每次f都要乘一次,很明显可以用矩阵乘法。。。

   所以用kmp预处理矩阵就ok,但是c[i][m]不能继承,所以只能从w[i][0]继承,矩乘时就枚举0~m-1

代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
struct matrix
{
int m[][];
matrix(){memset(m,,sizeof(m));}
}ans;
char st[];
int p[];
int n,m,mod;
matrix multi(matrix a,matrix b,int n,int m,int p)//[n,m]*[m,p];
{
matrix c;
for(int i=;i<n;i++)
for(int j=;j<p;j++)
for(int k=;k<m;k++)
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
return c;
}
matrix p_m(matrix a,int b)
{
matrix sum;
for(int i=;i<m;i++)sum.m[i][i]=;
while(b)
{
if(b%==)sum=multi(sum,a,m,m,m);
a=multi(a,a,m,m,m);b/=;
}
return sum;
}
void kmp()
{
p[]=;int j;
for(int i=;i<=m;i++)
{
j=p[i-];
while(j && st[i]!=st[j+])j=p[j];
if(st[i]==st[j+])j++;
p[i]=j;
}
for(int i=;i<m;i++)
{
for(int y=;y<=;y++)
{
j=i;
while(j && st[j+]-''!=y)j=p[j];
if(st[j+]-''==y)j++;
ans.m[j][i]=(ans.m[j][i]+)%mod;
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&mod);
scanf("%s",st+);
kmp();
ans=p_m(ans,n);
int sum=;
for(int i=;i<m;i++)sum=(sum+ans.m[i][])%mod;
printf("%d\n",sum%mod);
return ;
}

bzoj1009: [HNOI2008]GT考试(kmp+矩阵乘法)的更多相关文章

  1. [bzoj1009][HNOI2008]GT考试——KMP+矩阵乘法

    Brief Description 给定一个长度为m的禁止字符串,求出长度为n的字符串的个数,满足: 这个字符串的任何一个字串都不等于给定字符串. 本题是POJ3691的弱化版本. Algorithm ...

  2. BZOJ1009: [HNOI2008]GT考试(KMP+矩阵乘法)

    Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0< ...

  3. [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)

    Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...

  4. BZOJ 1009 [HNOI2008]GT考试 (KMP+矩阵乘法)

    ---恢复内容开始--- 题目大意:给定一个由数字构成的字符串A(len<=20),让你选择一个长度为n(n是给定的)字符串X,一个合法的字符串X被定义为,字符串X中不存在任何一段子串与A完全相 ...

  5. bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...

  6. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  7. BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法

    BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考 ...

  8. BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Statu ...

  9. bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...

  10. 题解:BZOJ 1009 HNOI2008 GT考试 KMP + 矩阵

    原题描述: 阿申准备报名参加GT考试,准考证号为N位数 X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai&a ...

随机推荐

  1. DML语句的使用(delete,update,insert)

     8)DML语句的使用   在PL/SQL中,DML语句与前面学习的 相同.    begin     --执行插入操作   insert into t001(id) values(1);     - ...

  2. 洛谷—— P1260 工程规划

    https://www.luogu.org/problem/show?pid=1260 题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000). ...

  3. vue中export default 在console中是this.$vm

    vue中export default 在console中是this.$vm 用vue-cli搭出框架,用webstorm进行开发,参考vue2的官网进行教程学习, 在vue-cli中是用es6的exp ...

  4. android 推断手机是否支持前置摄像头

    话不多说 直接上代码, @SuppressLint("NewApi") public static boolean isSupportFrontCamera() { if (!ha ...

  5. iOS UI10_带分区的省市区

    // // MainViewController.m // UI10_带分区的省市区 // // Created by dllo on 15/8/11. // Copyright (c) 2015年 ...

  6. bzoj2150: 部落战争(匈牙利)

    2150: 部落战争 题目:传送门 题解: 辣鸡数据..毁我AC率 先说做法,很容易就可以看出是二分图匹配的最小路径覆盖(可能是之前不久刚做过类似的题) 一开始还傻逼逼的去直接连边然后准备跑floyd ...

  7. sc.textFile("file:///home/spark/data.txt") Input path does not exist解决方法——submit 加参数 --master local 即可解决

    use this val data = sc.textFile("/home/spark/data.txt") this should work and set master as ...

  8. react-route4 按需加载配置心得

    本篇文章主要记录笔者项目中使用 react-route + webpack 做路由按需加载的心得,可能只有笔者一个人看,权当日记了.   很久很久以前,react-route还是2.X和3.X版本的时 ...

  9. @Query Annotation in Spring Data JPA--转

    原文地址:http://javabeat.net/spring-data-jpa-query/ In my previous post on Spring Data, I have explained ...

  10. 我所认识的EXT2(一)

    前言: 本文是笔者自己在学习文件系统中的一些体会,写出来和大家分享一下.本文首先是介绍了下文件系统的一些理论概念,然后分析了ext2文件系统的原理和部分源码. 文件系统是什么: 人们在认识一件陌生事物 ...