程序实现 softmax classifier, 含有一个隐含层的情况。activation function 是 ReLU : f(x)=max(0,x)

f1=w1x+b1

h1=max(0,f1)

f2=w2h1+b2

y=ef2i∑jef2j


function Out=Softmax_Classifier_1(train_x, train_y, opts) % setting learning parameters
step_size=opts.step_size;
reg=opts.reg;
batchsize = opts.batchsize;
numepochs = opts.numepochs;
K=opts.class;
h=opts.hidden; D=size(train_x, 2);
W1=0.01*randn(D,h);
b1=zeros(1,h);
W2=0.01*randn(h, K);
b2=zeros(1,K); loss(1 : numepochs)=0; num_examples=size(train_x, 1);
numbatches = num_examples / batchsize; for epoch=1:numepochs kk = randperm(num_examples);
loss(epoch)=0; % % tic;
% %
% % sprintf('epoch %d: \n' , epoch) for bat=1:numbatches batch_x = train_x(kk((bat - 1) * batchsize + 1 : bat * batchsize), :);
batch_y = train_y(kk((bat - 1) * batchsize + 1 : bat * batchsize), :); %% forward
f1=batch_x*W1+repmat(b1, batchsize, 1);
hiddenval_1=max(0, f1);
scores=hiddenval_1*W2+repmat(b2, batchsize, 1); %% the loss
exp_scores=exp(scores);
dd=repmat(sum(exp_scores, 2), 1, K);
probs=exp_scores./dd;
correct_logprobs=-log(sum(probs.*batch_y, 2));
data_loss=sum(correct_logprobs)/batchsize;
reg_loss=0.5*reg*sum(sum(W1.*W1))+0.5*reg*sum(sum(W2.*W2));
loss(epoch) =loss(epoch)+ data_loss + reg_loss; %% back propagation
dscores = probs-batch_y;
dscores=dscores/batchsize;
dW2=hiddenval_1'*dscores;
db2=sum(dscores); dhiddenval_1=dscores*W2';
mask=max(sign(hiddenval_1), 0);
df_1=dhiddenval_1.*mask;
dW1=batch_x'*df_1;
db1=sum(df_1); %% update
dW2=dW2+reg*W2;
dW1=dW1+reg*W1; W1=W1-step_size*dW1;
b1=b1-step_size*db1; W2=W2-step_size*dW2;
b2=b2-step_size*db2; end loss(epoch)=loss(epoch)/numbatches; if (mod(epoch, 10)==0)
sprintf('epoch: %d, training loss is %f: \n', epoch, loss(epoch))
end toc; end Out.W1=W1;
Out.b1=b1;
Out.b2=b2;
Out.W2=W2;
Out.loss=loss; end

机器学习 Softmax classifier (一个隐含层)的更多相关文章

  1. 机器学习 Softmax classifier (无隐含层)

    程序实现 Softmax classifer, 没有隐含层, f=wx+b y=efi∑jefj %% Softmax classifier function Out=Softmax_Classifi ...

  2. 基于MNIST数据集使用TensorFlow训练一个包含一个隐含层的全连接神经网络

    包含一个隐含层的全连接神经网络结构如下: 包含一个隐含层的神经网络结构图 以MNIST数据集为例,以上结构的神经网络训练如下: #coding=utf-8 from tensorflow.exampl ...

  3. ubuntu之路——day13 只用python的numpy在较为底层的阶段实现单隐含层神经网络

    首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273 ...

  4. 机器学习: Softmax Classifier (三个隐含层)

    程序实现 softmax classifier, 含有三个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...

  5. 机器学习:Softmax Classifier (两个隐含层)

    程序实现 softmax classifier, 含有两个隐含层的情况.activation function 是 ReLU : f(x)=max(0,x) f1=w1x+b1 h1=max(0,f1 ...

  6. 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络

    基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ...

  7. 理解dropout——本质是通过阻止特征检测器的共同作用来防止过拟合 Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了

    理解dropout from:http://blog.csdn.net/stdcoutzyx/article/details/49022443 http://www.cnblogs.com/torna ...

  8. [DeeplearningAI笔记]序列模型2.6Word2Vec/Skip-grams/hierarchical softmax classifier 分级softmax 分类器

    5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 Word2Vec Word2Vec相对于原先介绍的词嵌入的方法来说更加的简单快速. Mikolov T, Chen ...

  9. MLP神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数

    神经网络 隐含层节点数的设置]如何设置神经网络隐藏层 的神经元个数 置顶 2017年10月24日 14:25:07 开心果汁 阅读数:12968    版权声明:本文为博主原创文章,未经博主允许不得转 ...

随机推荐

  1. ListView-divider 分割线的设置

    1.去掉分割线 android:divider="@null" 2.设置分割线颜色跟宽度 android:divider="#19000000" android ...

  2. 81.内存模式实现cgi查询

    创建全局的二级指针 char ** g_pp;//全局的二级指针 获取数据有多少行 //获取行数 int getimax() { ; FILE *pf = fopen(path, "r&qu ...

  3. 移动开发js库Zepto.js使用中的一些注意点

    来自http://chaoskeh.com/blog/some-experience-of-using-zepto.html的参考. 前段时间完成了公司一个产品的 HTML5 触屏版,开发中使用了 Z ...

  4. Android Studio - no debuggable applications 的解决的方法

    之前logcat总是无法显示调试应用的信息 曾经我都是卸载重装.后来发如今StackOverflow有一个哥们说的非常对.一次就成功. 原话是这么说的: You also should have To ...

  5. Android 关于java.util.NoSuchElementException错误

    写了一个从A文件复制到B文件的例子,其中要求去掉重复的行. 于是想到了Set,这本来是很容易的事情,结果在向外写数据时抱错 Java.util.NoSuchElementException 网络上反复 ...

  6. SOAP消息结构

    邵盛松 2012-5-22 一 SOAP消息结构 SOAP消息包括以下元素 必需的 Envelope 元素,可把此 XML 文档标识为一条 SOAP 消息,XML文件的顶层元素,代表该文件为SOAP消 ...

  7. Android实现主动连接蓝牙耳机

    在Android程序中可以实现自动扫描蓝牙.配对蓝牙.建立数据通道. 蓝牙分不同类型,可以参考(http://gqdy365.iteye.com/admin/blogs/2229304) 可以入下面方 ...

  8. [RxJS] Connection operator: multicast and connect

    We have seen how Subjects are useful for sharing an execution of an RxJS observable to multiple obse ...

  9. PHP解决约瑟夫环问题

    PHP解决约瑟夫环问题 一.总结 二.PHP解决约瑟夫环问题 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到 ...

  10. Caffe 学习:Crop 层

    在Fully Convolutional Networks(FCN)中,会用到Crop 层,他的主要作用是进行裁切.下面我们举一个例子来说明如何使用Crop 层. Caffe中的数据是以 blobs形 ...