要是没有next_permutation这个函数,这些题认为还不算特别水,只是也不一定,那样可能就会有对应的模板了。

反正正是由于next_permutation这个函数。这些题包含之前的POJ1226,都变得简单起来。

排列
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 17486   Accepted: 6970

Description

题目描写叙述: 

大家知道,给出正整数n,则1到n这n个数能够构成n。种排列,把这些排列依照从小到大的顺序(字典顺序)列出,如n=3时,列出1 2 3,1 3 2,2 1 3,2 3 1,3 1 2,3 2 1六个排列。 



任务描写叙述: 

给出某个排列。求出这个排列的下k个排列,假设遇到最后一个排列,则下1排列为第1个排列,即排列1 2 3…n。

比方:n = 3,k=2 给出排列2 3 1,则它的下1个排列为3 1 2,下2个排列为3 2 1,因此答案为3 2 1。 

Input

第一行是一个正整数m。表示測试数据的个数,以下是m组測试数据。每组測试数据第一行是2个正整数n( 1 <= n < 1024 )和k(1<=k<=64),第二行有n个正整数,是1,2 … n的一个排列。

Output

对于每组输入数据,输出一行。n个数,中间用空格隔开,表示输入排列的下k个排列。

Sample Input

3
3 1
2 3 1
3 1
3 2 1
10 2
1 2 3 4 5 6 7 8 9 10

Sample Output

3 1 2
1 2 3
1 2 3 4 5 6 7 9 8 10

直接用next_permutation这个函数就可以。

代码:

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <string>
#include <cstring>
using namespace std; int num[1030]; int main()
{
int Test,N,Q,i;
cin>>Test;
while(Test--)
{
scanf_s("%d%d",&N,&Q);
for(i=0;i<N;i++)
scanf_s("%d",&num[i]);
for(i=1;i<=Q;i++)
next_permutation(num,num+N);
for(i=0;i<N;i++)
printf("%d ",num[i]);
printf("\n");
}
return 0;
}
Backward Digit Sums
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5072   Accepted: 2923

Description

FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N <= 10) in a certain order and then sum adjacent numbers to produce a new list with one fewer number. They repeat this until only a single number is left. For example,
one instance of the game (when N=4) might go like this:

    3   1   2   4

      4   3   6

        7   9

         16

Behind FJ's back, the cows have started playing a more difficult game, in which they try to determine the starting sequence from only the final total and the number N. Unfortunately, the game is a bit above FJ's mental arithmetic capabilities. 



Write a program to help FJ play the game and keep up with the cows.

Input

Line 1: Two space-separated integers: N and the final sum.

Output

Line 1: An ordering of the integers 1..N that leads to the given sum. If there are multiple solutions, choose the one that is lexicographically least, i.e., that puts smaller numbers first.

Sample Input

4 16

Sample Output

3 1 2 4

Hint

Explanation of the sample: 



There are other possible sequences, such as 3 2 1 4, but 3 1 2 4 is the lexicographically smallest.

题意是要输出N个数,这N个数是从1到N这些数的一个顺序。这种顺序依照杨辉三角的模式相加起来等于sum,输出相等时的第一个字典顺序。

一看到N是大于1小于10的我就想暴力了。。

代码:

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; int main()
{
int i,n,sum,a[12];
cin>>n>>sum; for(i=1;i<=10;i++)
a[i]=i;
if(n==1)
{
cout<<1<<endl;
}
else if(n==2)
{
cout<<1<<" "<<2<<endl;
}
else if(n==3)
{
while(1*a[1]+2*a[2]+1*a[3]!=sum)
{
next_permutation(a+1,a+3+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<endl;
}
else if(n==4)
{
while(1*a[1]+3*a[2]+3*a[3]+1*a[4]!=sum)
{
next_permutation(a+1,a+4+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<endl;
}
else if(n==5)
{
while(1*a[1]+4*a[2]+6*a[3]+4*a[4]+1*a[5]!=sum)
{
next_permutation(a+1,a+5+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<endl;
}
else if(n==6)
{
while(1*a[1]+5*a[2]+10*a[3]+10*a[4]+5*a[5]+1*a[6]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<endl;
}
else if(n==7)
{
while(1*a[1]+6*a[2]+15*a[3]+20*a[4]+15*a[5]+6*a[6]+1*a[7]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<endl;
}
else if(n==8)
{
while(1*a[1]+7*a[2]+21*a[3]+35*a[4]+35*a[5]+21*a[6]+7*a[7]+1*a[8]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<" "<<a[8]<<endl;
}
else if(n==9)
{
while(1*a[1]+8*a[2]+28*a[3]+56*a[4]+70*a[5]+56*a[6]+28*a[7]+8*a[8]+1*a[9]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<" "<<a[8]<<" "<<a[9]<<endl;
}
else if(n==10)
{
while(1*a[1]+9*a[2]+36*a[3]+84*a[4]+126*a[5]+126*a[6]+84*a[7]+36*a[8]+9*a[9]+1*a[10]!=sum)
{
next_permutation(a+1,a+n+1);
}
cout<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<a[4]<<" "<<a[5]<<" "<<a[6]<<" "<<a[7]<<" "<<a[8]<<" "<<a[9]<<" "<<a[10]<<endl;
} return 0;
}
The Next Permutation
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 979   Accepted: 717

Description

For this problem, you will write a program that takes a (possibly long) string of decimal digits, and outputs the permutation of those decimal digits that has the next larger value (as a decimal number) than the input number. For example: 



123 -> 132 

279134399742 -> 279134423799 



It is possible that no permutation of the input digits has a larger value. For example, 987.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set is a single line that contains the data set number, followed by a space, followed by up to 80 decimal digits which is the input
value.

Output

For each data set there is one line of output. If there is no larger permutation of the input digits, the output should be the data set number followed by a single space, followed by the string BIGGEST. If there is a solution, the output should be the data
set number, a single space and the next larger permutation of the input digits.

Sample Input

3
1 123
2 279134399742
3 987

Sample Output

1 132
2 279134423799
3 BIGGEST

还是直接使用next_permutation。这个函数是有返回值的,返回值是0时表示已经没有下一个字典顺序了,它要变成第一个字典顺序。返回值是1时表示还有字典顺序的下一个顺序,所以利用函数的这个性质就OK了。

代码:

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; int main()
{
int Test,num;
char s[100]; cin>>Test;
while(Test--)
{
cin>>num>>s;
cout<<num<<" "; int n=next_permutation(s,s+strlen(s)); if(n==0)
cout<<"BIGGEST"<<endl;
else
cout<<s<<endl;
}
return 0;
}

POJ1833 &amp; POJ3187 &amp; POJ3785 next_permutation应用的更多相关文章

  1. POJ1833 & POJ3187 & POJ3785

    要是没有next_permutation这个函数,这些题觉得还不算特别水,不过也不一定,那样可能就会有相应的模板了.反正正是因为next_permutation这个函数,这些题包括之前的POJ1226 ...

  2. 《挑战程序设计竞赛》2.1 穷竭搜索 POJ2718 POJ3187 POJ3050 AOJ0525

    POJ2718 Smallest Difference Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6509   Acce ...

  3. POJ-3187 Backward Digit Sums---枚举全排列

    题目链接: https://vjudge.net/problem/POJ-3187 题目大意: 输入n,sum,求1~n的数,如何排列之后,相邻两列相加,直到得出最后的结果等于sum,输出1~n的排列 ...

  4. STL::next_permutation();

    next_permutation()可以按字典序生成所给区间的全排列. 在STL中,除了next_permutation()外,还有一个函数prev_permutation(),两者都是用来计算排列组 ...

  5. 关于全排列 next_permutation() 函数的用法

    这是一个c++函数,包含在头文件<algorithm>里面,下面是基本格式. 1 int a[]; 2 do{ 3 4 }while(next_permutation(a,a+n)); 下 ...

  6. About next_permutation

    哈哈没错这个又是我们C++党的语言优势之一,用这个函数可以求当前排序的下一个排序,也就是说可以方便的求全排列,用这个函数需要用到algorithm这个头文件. 与这个函数相反的是prev_permut ...

  7. (DFS、全排列)POJ-3187 Backward Digit Sums

    题目地址 简要题意: 输入两个数n和m,分别表示给你1--n这些整数,将他们按一定顺序摆成一行,按照杨辉三角的计算方式进行求和,求使他们求到最后时结果等于m的排列中字典序最小的一种. 思路分析: 不难 ...

  8. STL next_permutation和prev_permutation函数

    利用next_permutation实现全排列升序输出,从尾到头找到第一个可以交换的位置, 直接求到第一个不按升序排列的序列. #include <iostream> #include & ...

  9. 【STL】next_permutation的原理和使用

    1.碰到next_permutation(permutation:序列的意思) 今天在TC上碰到一道简单题(SRM531 - Division Two - Level One),是求给定数组不按升序排 ...

随机推荐

  1. swift语言点评十三-Lazy

    Lazy Stored Properties A lazy stored property is a property whose initial value is not calculated un ...

  2. new 一个对象的时候发生了什么

    // 资料一: 摘抄自js高级程序设计(第三版)145页: 要创建Person的新实例,必须使用new操作符.以这种方式调用构造函数实际上会经历以下4个步骤: (1)创建一个新对象: (2)将构造函数 ...

  3. Python中编写精美图形界面(PyQt5)

    纯代码,布局的讲解 见: https://cloud.tencent.com/developer/article/1345469 Qt designer设计文件 .ui转 .py文件,进阶使用 注:不 ...

  4. [SHOI2012]魔法树

    题目:洛谷P3833. 题目大意:给你一棵树,有两种操作:1.给两个点和它们之间的最短路上的所有点加上一个值:2.询问以某个点为根的子树的子树和.你需要实现这个功能. 解题思路:如果只有最后才询问的话 ...

  5. [洛谷P3982]龙盘雪峰信息解析器

    题目大意:给你一串代码,要求进行解码.解码规则详见题目. 解题思路:这是一道字符串处理的题目. 首先,有这么几种情况输出Error: 1.代码中出现除了0和1外的字符. 2.代码长度不是8的倍数. 3 ...

  6. harbor 安装过程

    [root@master01 harbor]# ./prepare  Clearing the configuration file: ./common/config/adminserver/env ...

  7. LVM的创建与挂载

    LVM的诞生: 由于传统的磁盘管理不能对磁盘进行磁盘管理,比如我把/dev/sdb1挂载到了/liu目录下,但是因为数据量过大的原因,此文件系统磁盘利用率已经高达98%,那么我可以直接对这个磁盘进行扩 ...

  8. 洛谷 P1220 关路灯 (贪心+区间dp)

    这一道题我一直在想时间该怎么算. 看题解发现有个隐藏的贪心. 路径一定是左右扩展的,左右端点最多加+1(我竟然没发现!!) 这个性质非常重要!! 因此这道题用区间dp f[i][j]表示关完i到j的路 ...

  9. 紫书 例题11-9 UVa 1658 (拆点+最小费用流)

    这道题要求每个节点只能经过一次,也就是结点容量为1, 要拆点, 拆成两个点, 中间连一条弧容量为1, 费用为0. 因为拆成两个点, 所以要经过原图中的这个节点就要经过拆成的这两个点, 又因为这两个点的 ...

  10. redis为什么选择单线程工作模型

    1.先说一下为什么出现进程,线程 进程:在计算机发明之初就发现,在输入数据时(I/O速度慢),CPU是空闲的,这样就浪费了CPU资源,为了充分利用CPU资源,发明了进程,在输入程序A的数据时,程序B在 ...