机器学习之线性分类器(Linear Classifiers)——肿瘤预测实例
线性分类器:一种假设特征与分类结果存在线性关系的模型。该模型通过累加计算每个维度的特征与各自权重的乘积来帮助决策。
# 导入pandas与numpy工具包。
import pandas as pd
import numpy as np
# 创建特征列表。
column_names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size',
'Uniformity of Cell Shape', 'Marginal Adhesion', 'Single Epithelial Cell Size',
'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'Class']
# 使用pandas.read_csv函数从互联网读取指定数据。
data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data', names = column_names )
# 将?替换为标准缺失值表示。
data = data.replace(to_replace='?', value=np.nan)
# 丢弃带有缺失值的数据(只要有一个维度有缺失)。
data = data.dropna(how='any')
# 输出data的数据量和维度。
data.shape
# 使用sklearn.cross_valiation里的train_test_split模块用于分割数据。
from sklearn.cross_validation import train_test_split
# 随机采样25%的数据用于测试,剩下的75%用于构建训练集合。
X_train, X_test, y_train, y_test = train_test_split(data[column_names[1:10]], data[column_names[10]], test_size=0.25, random_state=33)
# 从sklearn.preprocessing里导入StandardScaler。
from sklearn.preprocessing import StandardScaler
# 从sklearn.linear_model里导入LogisticRegression与SGDClassifier。
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
# 标准化数据,保证每个维度的特征数据方差为1,均值为0。使得预测结果不会被某些维度过大的特征值而主导。
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
# 初始化LogisticRegression与SGDClassifier。
lr = LogisticRegression()
sgdc = SGDClassifier()
# 调用LogisticRegression中的fit函数/模块用来训练模型参数。
lr.fit(X_train, y_train)
# 使用训练好的模型lr对X_test进行预测,结果储存在变量lr_y_predict中。
lr_y_predict = lr.predict(X_test)
# 调用SGDClassifier中的fit函数/模块用来训练模型参数。
sgdc.fit(X_train, y_train)
# 使用训练好的模型sgdc对X_test进行预测,结果储存在变量sgdc_y_predict中。
sgdc_y_predict = sgdc.predict(X_test)
# 从sklearn.metrics里导入classification_report模块。
from sklearn.metrics import classification_report
# 使用逻辑斯蒂回归模型自带的评分函数score获得模型在测试集上的准确性结果。
print( 'Accuracy of LR Classifier:', lr.score(X_test, y_test))
# 利用classification_report模块获得LogisticRegression其他三个指标的结果。
print (classification_report(y_test, lr_y_predict, target_names=['Benign', 'Malignant']))
# 使用随机梯度下降模型自带的评分函数score获得模型在测试集上的准确性结果。
print( 'Accuarcy of SGD Classifier:', sgdc.score(X_test, y_test))
# 利用classification_report模块获得SGDClassifier其他三个指标的结果。
print (classification_report(y_test, sgdc_y_predict, target_names=['Benign', 'Malignant']))
LogisticRegression比SGDClassifier在测试集上有更高的准确性,因为Scikit—learn中用解析的方式计算LogisticRegression(用时长),而用梯度法估计SGDClassifier的参数(用时短),因此训练大规模数据10万量级以上建议用随机梯度算法对模型参数进行估计。
参考书籍:python机器学习及实践——从零开始通往Kaggle竞赛之路
机器学习之线性分类器(Linear Classifiers)——肿瘤预测实例的更多相关文章
- Python机器学习(基础篇---监督学习(线性分类器))
监督学习经典模型 机器学习中的监督学习模型的任务重点在于,根据已有的经验知识对未知样本的目标/标记进行预测.根据目标预测变量的类型不同,我们把监督学习任务大体分为分类学习与回归预测两类.监督学习任务的 ...
- 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...
- cs231n笔记 (一) 线性分类器
Liner classifier 线性分类器用作图像分类主要有两部分组成:一个是假设函数, 它是原始图像数据到类别的映射.另一个是损失函数,该方法可转化为一个最优化问题,在最优化过程中,将通过更新假设 ...
- 菜鸟之路——机器学习之SVM分类器学习理解以及Python实现
SVM分类器里面的东西好多呀,碾压前两个.怪不得称之为深度学习出现之前表现最好的算法. 今天学到的也应该只是冰山一角,懂了SVM的一些原理.还得继续深入学习理解呢. 一些关键词: 超平面(hyper ...
- SVM – 线性分类器
感知机 要理解svm,首先要先讲一下感知机(Perceptron),感知机是线性分类器,他的目标就是通过寻找超平面实现对样本的分类:对于二维世界,就是找到一条线,三维世界就是找到一个面,多维世界就是要 ...
- 机器学习技法笔记(2)-Linear SVM
从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是 ...
- cs231n笔记:线性分类器
cs231n线性分类器学习笔记,非完全翻译,根据自己的学习情况总结出的内容: 线性分类 本节介绍线性分类器,该方法可以自然延伸到神经网络和卷积神经网络中,这类方法主要有两部分组成,一个是评分函数(sc ...
- 1. cs231n k近邻和线性分类器 Image Classification
第一节课大部分都是废话.第二节课的前面也都是废话. First classifier: Nearest Neighbor Classifier 在一定时间,我记住了输入的所有的图片.在再次输入一个图片 ...
- SVM中的线性分类器
线性分类器: 首先给出一个非常非常简单的分类问题(线性可分),我们要用一条直线,将下图中黑色的点和白色的点分开,很显然,图上的这条直线就是我们要求的直线之一(可以有无数条这样的直线) 假如说, ...
随机推荐
- 2015 多校赛 第一场 1001 (hdu 5288)
Description OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l&l ...
- KAFKA 调优
KAFKA 调优 最近要对kafka集群做调优,就在网上看了些资料,总结如下. 我们的kafka版本是0.10.1.0. 机器配置是40G内存,300G硬盘. 一共有3台机器组成一个小的集群. Kak ...
- Spring学习笔记之依赖的注解(2)
Spring学习笔记之依赖的注解(2) 1.0 注解,不能单独存在,是Java中的一种类型 1.1 写注解 1.2 注解反射 2.0 spring的注解 spring的 @Controller@Com ...
- PIC EEPROM问题
1.通过export出来的Hex烧录,EEPROM内容会根据Hex中关于EEPROM的定义而改变. 2.通过编译源文件烧录,如果没有勾选Preserve EEPROM on program则EEPRO ...
- C语言运算符类型
算术运算符 运算符 描述 + 两个操作数相加 - 第一操作数减去第二个操作数 * 两个操作数相乘 / 分子除以分母 % 模运算和整数除法后的余数 ++ 递增操作增加一个整数值 -- 递减操作减少一个整 ...
- redis启动出错 Creating Server TCP listening socket 127.0.0.1:6379: bind: No error解决办法
windows下安装Redis第一次启动报错: [2368] 21 Apr 02:57:05.611 # Creating Server TCP listening socket 127.0.0.1: ...
- VS Code中编写html(3) 标签的宽高颜色背景设置
1 创建一个div标签: <body> <div> 这是一个div标签: </div> </body> 变成了圆圆的,是因为后面有设置了样式: back ...
- 安装`lrzsz`包及其报错解决办法
rz命令的安装包名是lrzsz. 安装lrzsz包时报错Failed to mount cd:///?devices=/dev/sr1,/dev/sr0 on /var/adm/mount/AP_0x ...
- 序列模型(3)---LSTM(长短时记忆)
摘自https://www.cnblogs.com/pinard/p/6519110.html 一.RNN回顾 略去上面三层,即o,L,y,则RNN的模型可以简化成如下图的形式: 二.LSTM模型结构 ...
- MAVN(自动创建maven项目骨架) 项目架构的生成
1.Maven的项目架构生成 A.打开DOS命令窗口选定文件的更跟目录 B:输入命令 mvn archetype:generate C:根据提示输入对应的标识 如图: 最后提示 SUCCESS 即为 ...