喜闻乐见的圆方树+虚树

图上不好做,先建出圆方树。

然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量。

语文不好,但结论画画图即可得出。

然后套路建出虚树。

发现在虚树上DP可以得出答案。

所以在虚树上DP即可。

代码极丑

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=401000;
struct Graph{
struct edge{
int to,nxt;
}e[N*2];
int cnt,head[N];
void add_edge(int u,int v){
cnt++;
e[cnt].nxt=head[u];
e[cnt].to=v;
head[u]=cnt;
}
}g1,g2,g3;
int dfn[N],low[N],tim,stack[N],top,num;
void Tarjan(int u){
dfn[u]=low[u]=++tim;
stack[++top]=u;
for(int i=g1.head[u];i;i=g1.e[i].nxt){
int v=g1.e[i].to;
if(dfn[v]==0){
Tarjan(v);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]){
g2.add_edge(++num,u);
g2.add_edge(u,num);
int x;
do{
x=stack[top--];
g2.add_edge(x,num);
g2.add_edge(num,x);
}while(x!=v);
}
}
else low[u]=min(low[u],dfn[v]);
}
}
int w[N],fa[N][22],dep[N],tot,n;
void dfs(int u,int f){
w[u]=w[f]+(u<=n?1:0);
fa[u][0]=f;dep[u]=dep[f]+1;dfn[u]=++tot;
for(int i=1;i<=20;i++)fa[u][i]=fa[fa[u][i-1]][i-1];
for(int i=g2.head[u];i;i=g2.e[i].nxt){
int v=g2.e[i].to;
if(v==f)continue;
dfs(v,u);
}
}
bool cmp(int x,int y){
return dfn[x]<dfn[y];
}
int getlca(int x,int y){
if(dep[x]<dep[y])swap(x,y);
for(int i=20;i>=0;i--)
if(dep[fa[x][i]]>=dep[y])x=fa[x][i];
if(x==y)return x;
for(int i=20;i>=0;i--)
if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
int q[N],Tot;
void ins(int x){
if(top<=1){stack[++top]=x;return;}
int lca=getlca(stack[top],x);
if(lca==stack[top]){stack[++top]=x;return;}
while(top&&dfn[stack[top-1]]>=dfn[lca])g3.add_edge(stack[top-1],stack[top]),top--;
if(stack[top]!=lca)g3.add_edge(lca,stack[top]),stack[top]=lca,q[++Tot]=lca;
stack[++top]=x;
}
int ans;
bool book[N];
void get_ans(int u){
if(u==1&&book[u]==0){
int tmp=0;
for(int i=g3.head[u];i;i=g3.e[i].nxt)tmp++;
if(tmp==1){
for(int i=g3.head[u];i;i=g3.e[i].nxt){
int v=g3.e[i].to;
get_ans(v);
}
return;
}
}
if(!book[u]&&u<=n)ans++;
for(int i=g3.head[u];i;i=g3.e[i].nxt){
int v=g3.e[i].to;
ans+=w[v]-w[u];
if(v<=n)ans--;
get_ans(v);
}
}
void clear(){
while(Tot)book[q[Tot]]=g3.head[q[Tot]]=0,Tot--;
g3.cnt=0;top=0;ans=0;
}
void init(){
memset(g1.head,0,sizeof(g1.head));
g1.cnt=0;
memset(g2.head,0,sizeof(g2.head));
g2.cnt=0;
tim=0;top=0;tot=0;
memset(dfn,0,sizeof(dfn));
}
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int m,Q,a[N];
int main(){
// freopen("xdx.out","w",stdout);
int T=read();
while(T--){
init();
num=n=read();m=read();
for(int i=1;i<=m;i++){
int u=read(),v=read();
g1.add_edge(u,v);g1.add_edge(v,u);
}
Tarjan(1);
dfs(1,0);
Q=read();
while(Q--){
clear();
int k=read();
for(int i=1;i<=k;i++)a[i]=read(),book[a[i]]=1,q[++Tot]=a[i];
sort(a+1,a+1+k,cmp);
if(a[1]!=1)stack[++top]=1,q[++Tot]=1;
for(int i=1;i<=k;i++)ins(a[i]);
for(int i=1;i<top;i++)g3.add_edge(stack[i],stack[i+1]);
get_ans(1);
printf("%d\n",ans);
}
}
return 0;
}

[SDOI2018]战略游戏(圆方树+虚树)的更多相关文章

  1. bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树)

    bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| ...

  2. [SDOI2018]战略游戏 圆方树,树链剖分

    [SDOI2018]战略游戏 这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点. LG传送门 还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中 ...

  3. BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  4. Luogu4606 SDOI2018 战略游戏 圆方树、虚树、链并

    传送门 弱化版 考虑到去掉一个点使得存在两个点不连通的形式类似割点,不难想到建立圆方树.那么在圆方树上对于给出的关键点建立虚树之后,我们需要求的就是虚树路径上所有圆点的数量减去关键点的数量. 因为没有 ...

  5. BZOJ.5329.[SDOI2018]战略游戏(圆方树 虚树)

    题目链接 显然先建圆方树,方点权值为0圆点权值为1,两点间的答案就是路径权值和减去起点终点. 对于询问,显然可以建虚树.但是只需要计算两关键点间路径权值,所以不需要建出虚树.统计DFS序相邻的两关键点 ...

  6. Luogu P4606 [SDOI2018] 战略游戏 圆方树 虚树

    https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始 ...

  7. 【SDOI2018】战略游戏(同时普及虚树)

    先看一道虚树普及题:给你一棵 $n$ 个点的树,$m$ 次询问,每次询问给你 $k$ 个关键点,求把这些点都连起来的路径并的最短长度.$1\le n,m\le 100000,\space 1\le \ ...

  8. 仙人掌 && 圆方树 && 虚树 总结

    仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做 ...

  9. [BZOJ5329][SDOI2018]战略游戏

    bzoj luogu Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任 ...

随机推荐

  1. redis-事务-transaction

    redis的目标的是: 简洁,高效,由于事务本身就是一个很复杂的东西,所有我们不能把事务做的太复杂... multi,exec 127.0.0.1:6379> multi OK 127.0.0. ...

  2. Aizu/Aoj 0121 Seven Puzzle

    这题应该算是经典的八数码问题的弱化版吧:给你一个4x2的方版,上面有0-7 八个数字,每次只能让编号0的方格跟他的上下左右的方格交换:所以也就是把方格0当做空格看待,每次只有空格周围的方格能够向空格处 ...

  3. 【cl】本地安装maven的jar包报错Artifact is already in the local repository

    原因是我直接把jar包放在了仓库里面 解决办法:将jar办放在不是仓库路径位置,在进行install就okle

  4. 推断一个点是否在某个区域内。百度,高德,腾讯都能用。(php版)

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/ ...

  5. ScrollViewer滚动究竟来触发载入数据的Behavior

    近期项目中遇到载入数据的性能问题, 原因是.net4.0的虚拟化支持不够完毕,有好多bug在4.5才修复. 我们仅仅能利用大家通用的做法来延迟载入数据: 每次载入固定少量的数据.当拖动究竟后.继续载入 ...

  6. luogu3386 【模板】 二分图匹配

    基本概念:二分图有两种节点:X节点和Y节点.如果X和Y可以匹配, 则X与Y连着一条边.每个X节点最多只能匹配一个Y节点,同时每个Y节点最多只能匹配一个X节点.最大匹配便是最多的匹配数. 交错路径:交错 ...

  7. vue组件的3种书写形式

    第一种使用script标签 <!DOCTYPE html> <html> <body> <div id="app"> <my- ...

  8. 【POJ 4007】 Flood-it!

    [题目链接] http://poj.org/problem?id=4007 [算法] IDA* [代码] #include <algorithm> #include <bitset& ...

  9. Redis(三)、Redis主从复制

    一.主从复制 主从复制:主节点负责写数据,从节点负责读数据,从而实现读写分离,提高redis的高可用性. 让一个服务器去复制(replicate)另一个服务器,我们称呼被复制的服务器为主节点(mast ...

  10. Vue2.0框架搭建基础操作及目录说明

    一.概述 vue.js是一套构建用户界面的渐进式框架.vue采用自底向上增量开发的设计.vue的核心库只关心视图层,非常容易学习,非常容易与其它库和已有项目整合.vue完全有能力驱动采用单文件组件和v ...