训练代码:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', '/tmp/data/', 'Directory for storing data') print(FLAGS.data_dir)
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) input=tf.placeholder(tf.float32,[None,784],name='input')
label=tf.placeholder(tf.float32,[None,10],name='label')
keep_prob=tf.placeholder(tf.float32,name='keep_prob') image=tf.reshape(input,[-1,28,28,1]) conv1_W=tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1))
conv1_b=tf.Variable(tf.constant(0.1,shape=[32]))
layer1=tf.nn.elu(tf.nn.conv2d(image,conv1_W,strides=[1,1,1,1],padding='SAME')+conv1_b)
layer2=tf.nn.max_pool(layer1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') conv2_W=tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1))
conv2_b=tf.Variable(tf.constant(0.1,shape=[64]))
layer3=tf.nn.elu(tf.nn.conv2d(layer2,conv2_W,strides=[1,1,1,1],padding='SAME')+conv2_b)
layer4=tf.nn.max_pool(layer3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') layer5=tf.reshape(layer4,[-1,7*7*64]) fc1_W=tf.Variable(tf.truncated_normal([7*7*64,1024],stddev=0.1))
fc1_b=tf.Variable(tf.constant(0.1,shape=[1024]))
layer5=tf.reshape(layer4,[-1,7*7*64])
layer6=tf.nn.elu(tf.matmul(layer5,fc1_W)+fc1_b) layer7=tf.nn.dropout(layer6,keep_prob) fc2_W=tf.Variable(tf.truncated_normal([1024,10],stddev=0.1))
fc2_b=tf.Variable(tf.constant(0.1,shape=[10]))
output=tf.nn.softmax(tf.matmul(layer7,fc2_W)+fc2_b,name='output') cross_entropy=tf.reduce_mean(-tf.reduce_sum(label*tf.log(output),reduction_indices=[1])) train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_predition=tf.equal(tf.argmax(output,1),tf.arg_max(label,1))
accuracy=tf.reduce_mean(tf.cast(correct_predition,tf.float32),name='accuracy') sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
batch = mnist.train.next_batch(50)
for i in range(20000):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={input: batch[0], label: batch[1], keep_prob: 0.5})
if i%100==0:
train_accuracy = accuracy.eval(feed_dict={input:batch[0], label:batch[1], keep_prob: 1.0})
print("%d:training accuracy %g"%(i,train_accuracy)) saver = tf.train.Saver()
save_path = saver.save(sess,"E:/dnn/model")

测试代码:

from __future__ import division
import numpy as np
import tensorflow as tf
from PIL import Image img = Image.open('E:/dnn/test.bmp').convert('L')
if img.size[0] != 28 or img.size[1] != 28:
img = img.resize((28, 28))
arr = []
for i in range(28):
for j in range(28):
pixel = 1.0 - float(img.getpixel((j, i)))/255.0
arr.append(pixel)
image = np.array(arr).reshape((1, 28, 28, 1)) saver = tf.train.import_meta_graph('E:/dnn/model.meta')
graph = tf.get_default_graph()
input=graph.get_tensor_by_name('input:0')
label=graph.get_tensor_by_name('label:0')
output=graph.get_tensor_by_name('output:0')
keep_prob=graph.get_tensor_by_name('keep_prob:0')
accuracy=graph.get_tensor_by_name('accuracy:0') with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('E:/dnn'))
test = sess.run(output, feed_dict={input: image.reshape(-1,784), label: np.full(10,1e-10).reshape(-1,10), keep_prob: 1.0})
print(test)
ans=0
for i in range(10):
if (test[0][i]>test[0][ans]):
ans=i
print(ans)

测试结果:

TensorFlow-mnist的更多相关文章

  1. TensorFlow MNIST(手写识别 softmax)实例运行

    TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/802 ...

  2. 学习笔记TF056:TensorFlow MNIST,数据集、分类、可视化

    MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入门级计算机 ...

  3. TensorFlow MNIST 问题解决

    TensorFlow MNIST 问题解决 一.数据集下载错误 错误:IOError: [Errno socket error] [Errno 101] Network is unreachable ...

  4. Mac tensorflow mnist实例

    Mac tensorflow mnist实例 前期主要需要安装好tensorflow的环境,Mac 如果只涉及到CPU的版本,推荐使用pip3,傻瓜式安装,一行命令!代码使用python3. 在此附上 ...

  5. tensorflow MNIST Convolutional Neural Network

    tensorflow MNIST Convolutional Neural Network MNIST CNN 包含的几个部分: Weight Initialization Convolution a ...

  6. tensorflow MNIST新手教程

    官方教程代码如下: import gzip import os import tempfile import numpy from six.moves import urllib from six.m ...

  7. TensorFlow MNIST初级学习

    MNIST MNIST 是一个入门级计算机视觉数据集,包含了很多手写数字图片,如图所示: 数据集中包含了图片和对应的标注,在 TensorFlow 中提供了这个数据集,我们可以用如下方法进行导入: f ...

  8. 学习笔记TF057:TensorFlow MNIST,卷积神经网络、循环神经网络、无监督学习

    MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .Ten ...

  9. AI tensorflow MNIST

    MNIST 数据 train-images-idx3-ubyte.gz:训练集图片 train-labels-idx1-ubyte.gz:训练集图片类别 t10k-images-idx3-ubyte. ...

  10. tensorflow——MNIST机器学习入门

    将这里的代码在项目中执行下载并安装数据集. 执行下面代码,训练.并评估模型: # _*_coding:utf-8_*_ import inputdata mnist = inputdata.read_ ...

随机推荐

  1. Polymorphism (computer science)

    In programming languages and type theory, polymorphism (from Greek πολύς, polys, "many, much&qu ...

  2. spirngMvc

    配置方式就略了 直接开始注解方式: 1.  新建项目 2.  导入jar包 3.  创建controller,用注解方式声明 4.  在web.xml配置核心分发器DispatcherServlet ...

  3. 【转载】java 监听文件或者文件夹变化的几种方式

    1.log4j的实现的文件内容变化监听 package com.jp.filemonitor; import org.apache.log4j.helpers.FileWatchdog; public ...

  4. Django--form组件cookie/session

    Field required=True, 是否允许为空 widget=None, HTML插件 label=None, 用于生成Label标签或显示内容 initial=None, 初始值 help_ ...

  5. eas之利用KDTableHelper批量填充数据

    // 下述代码将创建一个KDTable,并指定列名.表头单元格的显示值.和表体数据KDTable table = new KDTable();String [] columnKeys = new St ...

  6. PL\SQL(day05)

    PLSQL 1.常用的访问数据库的相关技术 1) plsql 过程化的sql 2) proc/c++ 在c/c++语言中访问oracle数据库的技术 3) ado/odbc vc中访问数据库的技术 4 ...

  7. 在MySQL的表中增加一列

    MySql中增加一列 如果想在一个已经建好的表中添加一列,可以用: alter table TABLE_NAME add column NEW_COLUMN_NAME varchar(45) not ...

  8. PAT 1089. Insert or Merge

    Insertion sort iterates, consuming one input element each repetition, and growing a sorted output li ...

  9. netty心跳机制和断线重连(四)

    心跳是为了保证客户端和服务端的通信可用.因为各种原因客户端和服务端不能及时响应和接收信息.比如网络断开,停电 或者是客户端/服务端 高负载. 所以每隔一段时间 客户端发送心跳包到客户端  服务端做出心 ...

  10. 可回味的js代码段

    1,关于bind()----- var name="global"; var person={ name:"person", hello:function(st ...