训练代码:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('data_dir', '/tmp/data/', 'Directory for storing data') print(FLAGS.data_dir)
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) input=tf.placeholder(tf.float32,[None,784],name='input')
label=tf.placeholder(tf.float32,[None,10],name='label')
keep_prob=tf.placeholder(tf.float32,name='keep_prob') image=tf.reshape(input,[-1,28,28,1]) conv1_W=tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1))
conv1_b=tf.Variable(tf.constant(0.1,shape=[32]))
layer1=tf.nn.elu(tf.nn.conv2d(image,conv1_W,strides=[1,1,1,1],padding='SAME')+conv1_b)
layer2=tf.nn.max_pool(layer1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') conv2_W=tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1))
conv2_b=tf.Variable(tf.constant(0.1,shape=[64]))
layer3=tf.nn.elu(tf.nn.conv2d(layer2,conv2_W,strides=[1,1,1,1],padding='SAME')+conv2_b)
layer4=tf.nn.max_pool(layer3,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') layer5=tf.reshape(layer4,[-1,7*7*64]) fc1_W=tf.Variable(tf.truncated_normal([7*7*64,1024],stddev=0.1))
fc1_b=tf.Variable(tf.constant(0.1,shape=[1024]))
layer5=tf.reshape(layer4,[-1,7*7*64])
layer6=tf.nn.elu(tf.matmul(layer5,fc1_W)+fc1_b) layer7=tf.nn.dropout(layer6,keep_prob) fc2_W=tf.Variable(tf.truncated_normal([1024,10],stddev=0.1))
fc2_b=tf.Variable(tf.constant(0.1,shape=[10]))
output=tf.nn.softmax(tf.matmul(layer7,fc2_W)+fc2_b,name='output') cross_entropy=tf.reduce_mean(-tf.reduce_sum(label*tf.log(output),reduction_indices=[1])) train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_predition=tf.equal(tf.argmax(output,1),tf.arg_max(label,1))
accuracy=tf.reduce_mean(tf.cast(correct_predition,tf.float32),name='accuracy') sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
batch = mnist.train.next_batch(50)
for i in range(20000):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={input: batch[0], label: batch[1], keep_prob: 0.5})
if i%100==0:
train_accuracy = accuracy.eval(feed_dict={input:batch[0], label:batch[1], keep_prob: 1.0})
print("%d:training accuracy %g"%(i,train_accuracy)) saver = tf.train.Saver()
save_path = saver.save(sess,"E:/dnn/model")

测试代码:

from __future__ import division
import numpy as np
import tensorflow as tf
from PIL import Image img = Image.open('E:/dnn/test.bmp').convert('L')
if img.size[0] != 28 or img.size[1] != 28:
img = img.resize((28, 28))
arr = []
for i in range(28):
for j in range(28):
pixel = 1.0 - float(img.getpixel((j, i)))/255.0
arr.append(pixel)
image = np.array(arr).reshape((1, 28, 28, 1)) saver = tf.train.import_meta_graph('E:/dnn/model.meta')
graph = tf.get_default_graph()
input=graph.get_tensor_by_name('input:0')
label=graph.get_tensor_by_name('label:0')
output=graph.get_tensor_by_name('output:0')
keep_prob=graph.get_tensor_by_name('keep_prob:0')
accuracy=graph.get_tensor_by_name('accuracy:0') with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('E:/dnn'))
test = sess.run(output, feed_dict={input: image.reshape(-1,784), label: np.full(10,1e-10).reshape(-1,10), keep_prob: 1.0})
print(test)
ans=0
for i in range(10):
if (test[0][i]>test[0][ans]):
ans=i
print(ans)

测试结果:

TensorFlow-mnist的更多相关文章

  1. TensorFlow MNIST(手写识别 softmax)实例运行

    TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/802 ...

  2. 学习笔记TF056:TensorFlow MNIST,数据集、分类、可视化

    MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入门级计算机 ...

  3. TensorFlow MNIST 问题解决

    TensorFlow MNIST 问题解决 一.数据集下载错误 错误:IOError: [Errno socket error] [Errno 101] Network is unreachable ...

  4. Mac tensorflow mnist实例

    Mac tensorflow mnist实例 前期主要需要安装好tensorflow的环境,Mac 如果只涉及到CPU的版本,推荐使用pip3,傻瓜式安装,一行命令!代码使用python3. 在此附上 ...

  5. tensorflow MNIST Convolutional Neural Network

    tensorflow MNIST Convolutional Neural Network MNIST CNN 包含的几个部分: Weight Initialization Convolution a ...

  6. tensorflow MNIST新手教程

    官方教程代码如下: import gzip import os import tempfile import numpy from six.moves import urllib from six.m ...

  7. TensorFlow MNIST初级学习

    MNIST MNIST 是一个入门级计算机视觉数据集,包含了很多手写数字图片,如图所示: 数据集中包含了图片和对应的标注,在 TensorFlow 中提供了这个数据集,我们可以用如下方法进行导入: f ...

  8. 学习笔记TF057:TensorFlow MNIST,卷积神经网络、循环神经网络、无监督学习

    MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .Ten ...

  9. AI tensorflow MNIST

    MNIST 数据 train-images-idx3-ubyte.gz:训练集图片 train-labels-idx1-ubyte.gz:训练集图片类别 t10k-images-idx3-ubyte. ...

  10. tensorflow——MNIST机器学习入门

    将这里的代码在项目中执行下载并安装数据集. 执行下面代码,训练.并评估模型: # _*_coding:utf-8_*_ import inputdata mnist = inputdata.read_ ...

随机推荐

  1. HDU_5724_状态压缩的sg函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5724 题目大意:n行20列的棋盘,对于每行,如果当前棋子右边没棋子,那可以直接放到右边,如果有就跳过放 ...

  2. 为什么使用dispatch_sync

    1.充分利用多线程的性能: 2.将分散在多线程中的核心操作归并到一个queue执行(通常为一个串行队列). 3.便于在任务线程中进行后继操作. 术语: 任务线程: 同步模块.

  3. 身份认证防止重放攻击的challenge-response方法

    或者叫询问-应答机制. 基于挑战/应答(Challenge/Response)方式的身份认证系统就是每次认证时认证服务器端都给客户端发送一个不同的"挑战"字串,客户端程序收到这个& ...

  4. python排序sorted与sort比较 (转)

    Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列. sorted(iterable,key=None,revers ...

  5. JAVA版CORBA程序

    1.题目分析题目1.Java版CORBA程序1——HelloWorld编写实现显示“Hello,World!+班级+中文姓名”字符串.题目2.JAVA版CORBA程序2——Counter编写实现连加. ...

  6. JavaScript for循环元素取下标问题

    <ul> <li>fg</li> <li>gd</li> <li>gds</li> <li>ghe< ...

  7. pytorch基础(4)-----搭建模型网络的两种方法

    方法一:采用torch.nn.Module模块 import torch import torch.nn.functional as F #法1 class Net(torch.nn.Module): ...

  8. 02-Linux命令基础-第02天(压缩包管理、服务器搭建与使用、vim)

    01-   复习 /boot 目录 引导项 八种文件类型: 文件:- 目录:d 软链接:l 字符设备文件:c 块设备文件:b 管道:p 套接字:s 未知 cp –a 保持源文件属性(如时间属性 如果不 ...

  9. P1040 加分二叉树(树上记忆化搜素)

    这道题很水 但我没做出来……………………………… 我写的时候状态设计错了,设计dp[l][m][r]为从l到r以m为根的值 这样写遍历状态就是n^3的,会TLE. 而且写路径的时候是用结构体写的,这样 ...

  10. 关于Hanoi算法

    java经典算法——河内算法(Hanoi) 有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,要把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出 ...