【题目链接】:http://www.lydsy.com/JudgeOnline/problem.php?id=1019

【题意】

【题解】



这个题解讲得很清楚了

http://blog.sina.com.cn/s/blog_76f6777d0101b8l1.html

大概就是设

f[i][j],g[i][j]分别表示第i个塔上有j个盘,然后这j个盘全部转移到g[i][j]上的方案数;

f[1..3][1]和g[1..3][1]都能根据一开始那个东西确定.

第i个塔有n个盘

则n-1个移到一个上

然后剩一个大的放在另外一个上面;

然后再把它们合在一起就能整体移出去了

(对一个盘只能操作一次,不,应该说不能对一个盘连续操作,n-1个盘看成整体一个盘);

根据汉诺塔的移动规则写递推.

最后输出f[1][n]

我把分析摘录下来。

都是上面那个博客的.

/*
f[x][i],g[x][i] 可由 f[][i-1],g[][i-1] 推得:
汉诺塔的经典转移,先做子问题把x柱上的i-1个圆盘移走,再把第i个大圆盘移走..
若设y=g[x][i-1],z=1+2+3-y-x(即除x,y以外的柱子编号)
即1) x上i-1个圆盘移至y上
2)由于不能对一个圆盘进行重复操作,所以必是将x上的第i个圆盘,移至z
由于i个圆盘还没叠到一起,所以接下来显然还要再次移动y上的i-1个,这时需要分类讨论:
若 f[y][i-1]=z:
3)移到z后,便结束了
综合以上,这种情况下,f[x][i]=f[x][i-1]+1+f[y][i-1],g[x][i]=z
若f[y][i-1]=x:
3)i-1个圆盘移至x
4)不能对一个圆盘进行重复操作,所以必将z上的第i个圆盘,移至y
5)因g[x][i-1]=y,所以x上i-1个圆盘移至y,结束
综合以上,这种情况下,f[x][i]=f[x][i-1]+1+f[y][i-1]+1+f[x][i-1],g[x][i]=y
*/

ps:这题还能构造线性关系搞



f[n] = k*f[n-1]+b;

求出k和b就能搞;

当然要从n>=3开始.



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%lld",&x) typedef pair<int, int> pii;
typedef pair<LL, LL> pll; const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
const double pi = acos(-1.0);
const int N = 40; int n;
char s[8][5];
LL f[4][N];
int g[4][N]; int main()
{
//freopen("F:\\rush.txt", "r", stdin);
rei(n);
rep1(i, 1, 6)
scanf("%s", s[i]);
rep1(i, 1, 3)
{
rep1(j, 1, 6)
{
if (s[j][0] - 'A' + 1 == i)
{
g[i][1] = s[j][1] - 'A' + 1;
f[i][1] = 1;
break;
}
}
}
rep1(i, 2, n)
{
rep1(x, 1, 3)
{
int y = g[x][i - 1];
int z = 1 + 2 + 3 - x - y;
if (g[y][i - 1] == z)
{
f[x][i] = f[x][i - 1] + 1 + f[y][i - 1];
g[x][i] = z;
}
else
{
f[x][i] = f[x][i - 1] + 1 + f[y][i - 1] + 1 + f[x][i - 1];
g[x][i] = y;
}
}
}
printf("%lld\n", f[1][n]);
return 0;
}

【BZOJ 1019】 [SHOI2008]汉诺塔的更多相关文章

  1. BZOJ 1019: [SHOI2008]汉诺塔( dp )

    dp(x, y)表示第x根柱子上y个盘子移开后到哪根柱子以及花费步数..然后根据汉诺塔原理去转移... ------------------------------------------------ ...

  2. BZOJ 1019: [SHOI2008]汉诺塔

    Description 一个汉诺塔,给出了移动的优先顺序,问从A移到按照规则移到另一个柱子上的最少步数. 规则:小的在大的上面,每次不能移动上一次移动的,选择可行的优先级最高的. Sol DP. 倒着 ...

  3. BZOJ 1019 :[SHOI2008]汉诺塔(递推)

    好吧蒟蒻还是看题解的 其实看到汉诺塔就该想到是递推了 设f[i][j]表示i个在j杆转移到另一个杆的次数 g[i][j]表示i个在j杆转移到那个杆上 可得 f[i][j]=f[i-1][j]+1+f[ ...

  4. 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)

    1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...

  5. 1019: [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status] ...

  6. 【BZOJ】1019: [SHOI2008]汉诺塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题意:汉诺塔规则,只不过盘子n<=30,终点在B柱或C柱,每一次移动要遵守规则:1.小的 ...

  7. bzoj千题计划109:bzoj1019: [SHOI2008]汉诺塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题目中问步骤数,没说最少 可以大胆猜测移动方案唯一 (真的是唯一但不会证) 设f[i][j] ...

  8. bzoj1019 [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1030  Solved: 638[Submit][Status] ...

  9. 【bzoj1019】[SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1427  Solved: 872[Submit][Status] ...

  10. bzoj1019: [SHOI2008]汉诺塔(动态规划)

    1019: [SHOI2008]汉诺塔 题目:传送门 简要题意: 和经典的汉诺塔问题区别不大,但是题目规定了一个移动时的优先级: 如果当前要从A柱子移动,但是A到C的优先级比A到B的优先级大的话,那就 ...

随机推荐

  1. node版本升级后,原有项目打不开

    node版本升级后,原有项目出现以下问题 gulp[8272]: src\node_contextify.cc:628: Assertion `args[1]->IsString()' fail ...

  2. Anaconda的安装

    Windows下Anaconda的安装和简单使用 Anaconda is a completely free Python distribution (including for commercial ...

  3. GO语言学习(八)Go 语言常量

    Go 语言常量 常量是一个简单值的标识符,在程序运行时,不会被修改的量. 常量中的数据类型只可以是布尔型.数字型(整数型.浮点型和复数)和字符串型. 常量的定义格式: const identifier ...

  4. jvisualvm 工具使用

    VisualVM 是Netbeans的profile子项目,已在JDK6.0 update 7 中自带(java启动时不需要特定参数,监控工具在bin/jvisualvm.exe). https:// ...

  5. php实现 查找输入整数二进制中1的个数

    php实现 查找输入整数二进制中1的个数 一.总结 一句话总结: 1.if($j&intval($num)){}的作用是什么? 1 <?php 2 while($num=trim(fge ...

  6. jedis连接sentinel示例程序

    1.添加依赖pom.xml <dependency> <groupId>redis.clients</groupId> <artifactId>jedi ...

  7. Web网站架构演变—高并发、大数据

    转 Web网站架构演变—高并发.大数据 2018年07月25日 17:27:22 gis_morningsun 阅读数:599   前言 我们以javaweb为例,来搭建一个简单的电商系统,看看这个系 ...

  8. Android多线程研究(8)——Java中的原子性理解

    一.什么是原子性 原子性是世界上最小单位,具有不可分割性.比如a=0;(a非long和double类型)这个操作是不可分割的,那么我们说这个操作是原子操作.再比如:a++;这个操作实际上是a=a+1; ...

  9. Vim技巧之四大模式_插入模式

    Vim技巧之四大模式_插入模式 在插入模式中及时更正错误 插入-普通模式 在插入模式模式以下直接粘贴指定寄存器的内容 插入模式中做运算 用字符编码插入很常使用字符 替换已有的文本 Vim技巧之四大模式 ...

  10. php实现数值的整数次方

    php实现数值的整数次方 一.总结 没有考虑到指数为负数的情况 二.php实现数值的整数次方 题目描述: 给定一个double类型的浮点数base和int类型的整数exponent.求base的exp ...