time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

A group of n cities is connected by a network of roads. There is an undirected road between every pair of cities, so there are roads in total. It takes exactly y seconds to traverse any single road.

A spanning tree is a set of roads containing exactly n - 1 roads such that it’s possible to travel between any two cities using only these roads.

Some spanning tree of the initial network was chosen. For every road in this tree the time one needs to traverse this road was changed from y to x seconds. Note that it’s not guaranteed that x is smaller than y.

You would like to travel through all the cities using the shortest path possible. Given n, x, y and a description of the spanning tree that was chosen, find the cost of the shortest path that starts in any city, ends in any city and visits all cities exactly once.

Input

The first line of the input contains three integers n, x and y (2 ≤ n ≤ 200 000, 1 ≤ x, y ≤ 109).

Each of the next n - 1 lines contains a description of a road in the spanning tree. The i-th of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ n) — indices of the cities connected by the i-th road. It is guaranteed that these roads form a spanning tree.

Output

Print a single integer — the minimum number of seconds one needs to spend in order to visit all the cities exactly once.

Examples

input

5 2 3

1 2

1 3

3 4

5 3

output

9

input

5 3 2

1 2

1 3

3 4

5 3

output

8

Note

In the first sample, roads of the spanning tree have cost 2, while other roads have cost 3. One example of an optimal path is .

In the second sample, we have the same spanning tree, but roads in the spanning tree cost 3, while other roads cost 2. One example of an optimal path is .

【题解】



给你一个完全图n*(n-1)/2的图;

这个图的所有边边权都为y;

然后再对这个图的某个生成树上的边进行修改;这个生成树上的边边权从y改成x;

(这个生成树就是给你的n-1条边组成的树);

然后让你求遍历所有的边的最小边权和(每个点只能走一次);

如果x小于y;

则我们最后的路径应该在那个所给的生成树上的边尽可能地多;

怎样保证呢?

从任意一个点进行dfs(假如从1点开始);

每个点可以连接点边数肯定是2(大于3就不能保证每个点只走一次);



上图是样例输入的情形。

最后dfs能形成两条路径

1->2

和5->3->4

然后从这两个子图里面比如引一条2指向5的y边权边过去;就能遍历整张图了;

这个dfs的依据就是每个点最多只能联通两条边;

在dfs的时候记录这个点还能连几条边;

然后判断一下目标点能连几条边;如果都能连(都大于0)则连一条边;

如果y<=x

让非生成树边最多;

其实只有没有一个点和其余n-1个点相连的情况都能保证遍历的时候全是非生成树边;因为你总可以和那个不能通过生成树边到达的点通过非生成树边到达;

则特判一下就好;

如果有一个点能和其他n-1个点相连答案就是x+(n-2)*y否则就都是(n-1)*y;

#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#include <stack>
#include <string>
#define lson L,m,rt<<1
#define rson m+1,R,rt<<1|1
#define LL long long using namespace std; const int MAXN = 2e5+10; const int dx[5] = {0,1,-1,0,0};
const int dy[5] = {0,0,0,-1,1};
const double pi = acos(-1.0); int n;
LL x,y,in=0;
vector <int> a[MAXN]; void input_LL(LL &r)
{
r = 0;
char t = getchar();
while (!isdigit(t)) t = getchar();
LL sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} void input_int(int &r)
{
r = 0;
char t = getchar();
while (!isdigit(t)) t = getchar();
int sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} bool dfs(int x,int fa)
{
int rest = 2;
int len = a[x].size();
for (int i =0 ;i <= len-1;i++)
{
int y = a[x][i];
if (y==fa)
continue;
bool j = dfs(y,x);
if (rest&&j)
{
rest--;
in++;
}
}
return rest>0;
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
input_int(n);input_LL(x);input_LL(y);
for (int i = 1;i <= n-1;i++)
{
int x0,y0;
input_int(x0);input_int(y0);
a[x0].push_back(y0);
a[y0].push_back(x0);
}
if (x<y)
{
dfs(1,-1);
LL ans = in*x + (n-1-in)*y;
cout << ans << endl;
}
else
{
for (int i = 1;i <= n;i++)
{
int len = a[i].size();
if (len == n-1)
{
cout << x+(n-2)*y<<endl;
return 0;
}
}
cout << (n-1)*y<<endl;
}
return 0;
}

【19.27%】【codeforces 618D】Hamiltonian Spanning Tree的更多相关文章

  1. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  2. Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)

    题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径. 先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上 ...

  3. CodeForces 618D Hamiltonian Spanning Tree

    题意:要把所有的节点都访问一次,并且不能重复访问,有两种方式访问,一种是根据树上的路径 走和当前节点连接的下一个节点cost x, 或者可以不走树上边,直接跳到不与当前节点连接的节点,cost y 分 ...

  4. Codeforces Edu3 E. Minimum spanning tree for each edge

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  5. Codeforces 1682 D Circular Spanning Tree

    题意 1-n排列,构成一个圆:1-n每个点有个值0或者1,0代表点的度为偶数,1代表点的度为计数:询问能否构成一棵树,树的连边在圆内不会相交,在圆边上可以相交,可以则输出方案. 提示 1. 首先考虑什 ...

  6. 【19.77%】【codeforces 570D】Tree Requests

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  7. 【27.91%】【codeforces 734E】Anton and Tree

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. 【51.27%】【codeforces 604A】Uncowed Forces

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  9. 【27.85%】【codeforces 743D】Chloe and pleasant prizes

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. angular 响应式自定义表单控件—注册头像实例

    1. 组件继承ControlValueAccessor,ControlValueAccessor接口需要实现三个必选方法 writeValue() 用于向元素中写入值,获取表单的元素的元素值 regi ...

  2. HDU 2844 Coins (多重背包计数 空间换时间)

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  3. js中的$符号代表什么

    js中的$符号代表什么 一.总结 1.$:相当于document.getElementById(...) 2.$常用用法:每句话意思下面有,好东西 $("div p"); // ( ...

  4. 大战C100K之-Linux内核调优篇--转载

    原文地址:http://joyexpr.com/2013/11/22/c100k-4-kernel-tuning/ 早期的系统,系统资源包括CPU.内存等都是非常有限的,系统为了保持公平,默认要限制进 ...

  5. FPGA实现UHS的一些资料

    对使用FPGA和SD卡进行UHS模式通信的评估: 论文:基于FPGA的SD UHS-II卡控制器设计与实现 设计IP:SD UHS-II Host Controller 供应商: System Lev ...

  6. 新浪sae上安装原生wordpress4.1

    1. 加入/改动wp-config.php文件 <?php /** * WordPress 基础配置文件. * * 本文件包括下面配置选项: MySQL 设置.数据库表名前缀. * 密匙.Wor ...

  7. Android学习笔记之GridView的使用具体解释

    (1)创建布局代码例如以下: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android&quo ...

  8. 贝叶斯统计(Bayesian statistics) vs 频率统计(Frequentist statistics):marginal likelihood(边缘似然)

    1. Bayesian statistics 一组独立同分布的数据集 X=(x1,-,xn)(xi∼p(xi|θ)),参数 θ 同时也是被另外分布定义的随机变量 θ∼p(θ|α),此时: p(X|α) ...

  9. MHA 一主两从搭建-脚本VIP-自动切换

    环境介绍:主机名 IP MHA角色 MySQL角色node1 192.168.56.26 Node MySQL Master node2 192.168.56.27 Node MySQL Master ...

  10. Intent七在属性之一:ComponentName 分类: H1_ANDROID 2013-11-10 10:54 1184人阅读 评论(1) 收藏

    注:在<疯狂android讲义>中,此属性称为Component,官方文档中称为ComponentName. 1.The name of the component that should ...