time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

A group of n cities is connected by a network of roads. There is an undirected road between every pair of cities, so there are roads in total. It takes exactly y seconds to traverse any single road.

A spanning tree is a set of roads containing exactly n - 1 roads such that it’s possible to travel between any two cities using only these roads.

Some spanning tree of the initial network was chosen. For every road in this tree the time one needs to traverse this road was changed from y to x seconds. Note that it’s not guaranteed that x is smaller than y.

You would like to travel through all the cities using the shortest path possible. Given n, x, y and a description of the spanning tree that was chosen, find the cost of the shortest path that starts in any city, ends in any city and visits all cities exactly once.

Input

The first line of the input contains three integers n, x and y (2 ≤ n ≤ 200 000, 1 ≤ x, y ≤ 109).

Each of the next n - 1 lines contains a description of a road in the spanning tree. The i-th of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ n) — indices of the cities connected by the i-th road. It is guaranteed that these roads form a spanning tree.

Output

Print a single integer — the minimum number of seconds one needs to spend in order to visit all the cities exactly once.

Examples

input

5 2 3

1 2

1 3

3 4

5 3

output

9

input

5 3 2

1 2

1 3

3 4

5 3

output

8

Note

In the first sample, roads of the spanning tree have cost 2, while other roads have cost 3. One example of an optimal path is .

In the second sample, we have the same spanning tree, but roads in the spanning tree cost 3, while other roads cost 2. One example of an optimal path is .

【题解】



给你一个完全图n*(n-1)/2的图;

这个图的所有边边权都为y;

然后再对这个图的某个生成树上的边进行修改;这个生成树上的边边权从y改成x;

(这个生成树就是给你的n-1条边组成的树);

然后让你求遍历所有的边的最小边权和(每个点只能走一次);

如果x小于y;

则我们最后的路径应该在那个所给的生成树上的边尽可能地多;

怎样保证呢?

从任意一个点进行dfs(假如从1点开始);

每个点可以连接点边数肯定是2(大于3就不能保证每个点只走一次);



上图是样例输入的情形。

最后dfs能形成两条路径

1->2

和5->3->4

然后从这两个子图里面比如引一条2指向5的y边权边过去;就能遍历整张图了;

这个dfs的依据就是每个点最多只能联通两条边;

在dfs的时候记录这个点还能连几条边;

然后判断一下目标点能连几条边;如果都能连(都大于0)则连一条边;

如果y<=x

让非生成树边最多;

其实只有没有一个点和其余n-1个点相连的情况都能保证遍历的时候全是非生成树边;因为你总可以和那个不能通过生成树边到达的点通过非生成树边到达;

则特判一下就好;

如果有一个点能和其他n-1个点相连答案就是x+(n-2)*y否则就都是(n-1)*y;

#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#include <stack>
#include <string>
#define lson L,m,rt<<1
#define rson m+1,R,rt<<1|1
#define LL long long using namespace std; const int MAXN = 2e5+10; const int dx[5] = {0,1,-1,0,0};
const int dy[5] = {0,0,0,-1,1};
const double pi = acos(-1.0); int n;
LL x,y,in=0;
vector <int> a[MAXN]; void input_LL(LL &r)
{
r = 0;
char t = getchar();
while (!isdigit(t)) t = getchar();
LL sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} void input_int(int &r)
{
r = 0;
char t = getchar();
while (!isdigit(t)) t = getchar();
int sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} bool dfs(int x,int fa)
{
int rest = 2;
int len = a[x].size();
for (int i =0 ;i <= len-1;i++)
{
int y = a[x][i];
if (y==fa)
continue;
bool j = dfs(y,x);
if (rest&&j)
{
rest--;
in++;
}
}
return rest>0;
} int main()
{
//freopen("F:\\rush.txt", "r", stdin);
input_int(n);input_LL(x);input_LL(y);
for (int i = 1;i <= n-1;i++)
{
int x0,y0;
input_int(x0);input_int(y0);
a[x0].push_back(y0);
a[y0].push_back(x0);
}
if (x<y)
{
dfs(1,-1);
LL ans = in*x + (n-1-in)*y;
cout << ans << endl;
}
else
{
for (int i = 1;i <= n;i++)
{
int len = a[i].size();
if (len == n-1)
{
cout << x+(n-2)*y<<endl;
return 0;
}
}
cout << (n-1)*y<<endl;
}
return 0;
}

【19.27%】【codeforces 618D】Hamiltonian Spanning Tree的更多相关文章

  1. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  2. Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)

    题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径. 先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上 ...

  3. CodeForces 618D Hamiltonian Spanning Tree

    题意:要把所有的节点都访问一次,并且不能重复访问,有两种方式访问,一种是根据树上的路径 走和当前节点连接的下一个节点cost x, 或者可以不走树上边,直接跳到不与当前节点连接的节点,cost y 分 ...

  4. Codeforces Edu3 E. Minimum spanning tree for each edge

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  5. Codeforces 1682 D Circular Spanning Tree

    题意 1-n排列,构成一个圆:1-n每个点有个值0或者1,0代表点的度为偶数,1代表点的度为计数:询问能否构成一棵树,树的连边在圆内不会相交,在圆边上可以相交,可以则输出方案. 提示 1. 首先考虑什 ...

  6. 【19.77%】【codeforces 570D】Tree Requests

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  7. 【27.91%】【codeforces 734E】Anton and Tree

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. 【51.27%】【codeforces 604A】Uncowed Forces

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  9. 【27.85%】【codeforces 743D】Chloe and pleasant prizes

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. angular 响应式自定义表单控件—注册头像实例

    1. 组件继承ControlValueAccessor,ControlValueAccessor接口需要实现三个必选方法 writeValue() 用于向元素中写入值,获取表单的元素的元素值 regi ...

  2. NSAttributeString创建各种文字效果

    NSDictionary *attributes =@{ NSForegroundColorAttributeName: [UIColorredColor], NSFontAttributeName: ...

  3. python基础-合并列表

    1.append()  向列表尾部追加一个新元素,列表只占一个索引位,在原有列表上增加 2.extend() 向列表尾部追加一个列表,将列表中的每个元素都追加进来,在原有列表上增加 3.+  直接用+ ...

  4. 1、初识python

    1.linux下运行python脚本时,在第一行通过“#!/usr/bin/env python”指定python h.py <=> ./h.py 具有相同的效果 (h.py需要有执行权限 ...

  5. 【例题 6-3 UVA - 442】Matrix Chain Multiplication

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 用栈来处理一下表达式就好. 因为括号是一定匹配的.所以简单很多. ab x bc会做abc次乘法. [代码] #include< ...

  6. spark原理介绍 分类: B8_SPARK 2015-04-28 12:33 1039人阅读 评论(0) 收藏

    1.spark是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加快速.因此运行spark的机器应该尽量的大内存,如96G以上. 2.spark所有操作均基于RDD,操作主要分成2大类:tra ...

  7. 【数学】概念的理解 —— 有序对(ordered pair)

    有序对 (a,b) 是一组对象,不同的顺序意味着不同的对象,(a,b)≠(b,a) 除非 a=b,正是因为对象的相对顺序是有着不同含义的,因此有时也称之为 2 维向量.与之相对的无序对(unorder ...

  8. [array] leetCode-15. 3Sum-Medium

    leetCode-15. 3Sum-Medium descrition Given an array S of n integers, are there elements a, b, c in S ...

  9. u-boot-2011.06在基于s3c2440开发板的移植之引导内核与加载根文件系统

    http://www.linuxidc.com/Linux/2012-09/70510.htm  来源:Linux社区  作者:赵春江 uboot最主要的功能就是能够引导内核启动.本文就介绍如何实现该 ...

  10. 初识Visual Studio Code 一.使用Visual Studio Code 开发C# 控制台程序

    原文:初识Visual Studio Code 一.使用Visual Studio Code 开发C# 控制台程序 1. 安装.NET Core 安装包下载地址:https://www.microso ...