Problem Description
As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway.
 
Input
The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file.
 
Output
For each test case, you should output how many ways that all the trains can get out of the railway.
 
Sample Input
1 2 3 10
 
Sample Output
1 2 5 16796

Hint

The result will be very large, so you may not process it by 32-bit integers.

 
Author
Ignatius.L
 

出栈次序

一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?[4-5]

常规分析
首先,我们设f(n)=序列个数为n的出栈序列种数。(我们假定,最后出栈的元素为k,显然,k取不同值时的情况是相互独立的,也就是求出每种k最后出栈的情况数后可用加法原则,由于k最后出栈,因此,在k入栈之前,比k小的值均出栈,此处情况有f(k-1)种,而之后比k大的值入栈,且都在k之前出栈,因此有f(n-k)种方式,由于比k小和比k大的值入栈出栈情况是相互独立的,此处可用乘法原则,f(n-k)*f(k-1)种,求和便是Catalan递归式。ps.author.陶百百)
首次出空之前第一个出栈的序数k将1~n的序列分成两个序列,其中一个是1~k-1,序列个数为k-1,另外一个是k+1~n,序列个数是n-k。
此时,我们若把k视为确定一个序数,那么根据乘法原理,f(n)的问题就等价于——序列个数为k-1的出栈序列种数乘以序列个数为n - k的出栈序列种数,即选择k这个序数的f(n)=f(k-1)×f(n-k)。而k可以选1到n,所以再根据加法原理,将k取不同值的序列种数相加,得到的总序列种数为:f(n)=f(0)f(n-1)+f(1)f(n-2)+……+f(n-1)f(0)。
看到此处,再看看卡特兰数的递推式,答案不言而喻,即为f(n)=h(n)= C(2n,n)/(n+1)= c(2n,n)-c(2n,n-1)(n=0,1,2,……)。
最后,令f(0)=1,f(1)=1。
非常规分析
对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。
在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。
反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。
因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。
显然,不符合要求的方案数为c(2n,n+1)。由此得出输出序列的总数目=c(2n,n)-c(2n,n+1)=c(2n,n)/(n+1)=h(n)。
类似问题 买票找零
有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
 
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 102
#define INF 1000000009
/*
给定递增顺序进入,问有多少种方式出栈
1 1
2: 1-2 2-1
3: 123
*/
int a[MAXN][MAXN];
void init()
{
int i, j, yu, len;
a[][] = ; a[][] = ;
a[][] = ; a[][] = ;
len = ;
for (i = ; i < MAXN; i++)
{
yu = ;
for (j = ; j <= len; j++)
{
int tmp = a[i - ][j] * ( * i - ) + yu;
yu = tmp / ;
a[i][j] = tmp % ;
}
while (yu)
{
a[i][++len] = yu % ;
yu /= ;
}
for (j = len; j > ; j--)
{
int tmp = a[i][j] + yu*;
a[i][j] = tmp / (i + );
yu = tmp % (i + );
}
while (!a[i][len])
len--;
a[i][] = len;
}
}
int main()
{
init();
int n;
while (scanf("%d", &n) != EOF)
{
for (int i = a[n][]; i > ; i--)
printf("%d", a[n][i]);
printf("\n");
}
}

Train Problem II HDU 1023 卡特兰数的更多相关文章

  1. HDU 1023 Train Problem II (大数卡特兰数)

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. hdu 1023 卡特兰数+高精度

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. hdu 1023 卡特兰数《 大数》java

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  4. HDU 1023 Train Problem II( 大数卡特兰 )

    链接:传送门 题意:裸卡特兰数,但是必须用大数做 balabala:上交高精度模板题,增加一下熟悉度 /************************************************ ...

  5. HDU 1023(卡特兰数 数学)

    题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目. 开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n )  =  ( ( 4*n-2 ) / ...

  6. Train Problem II(卡特兰数 组合数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1023 Train Problem II Time Limit: 2000/1000 MS (Java/ ...

  7. hdu 1023 Train Problem II

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1212 Train Problem II Description As we all know the ...

  8. hdu1032 Train Problem II (卡特兰数)

    题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能.    (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...

  9. Train Problem II(卡特兰数+大数乘除)

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. Windows虚拟机中无法传输Arduino程序的问题

    现象 最近儿子在学习机器人编程,其中有一步需要把板子和电脑用USB线相连接,然后把在电脑中编辑好的程序传输到Arduino板子上.在Windows笔记本上能正常工作,但在我的Mac笔记本的Window ...

  2. JavaScript--innerHTML 属性

    innerHTML 属性用于获取或替换 HTML 元素的内容. 语法: Object.innerHTML 注意: 1.Object是获取的元素对象,如通过document.getElementById ...

  3. 题解报告:hdu 1213 How Many Tables

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1213 Problem Description Today is Ignatius' birthday. ...

  4. Linux命令(005) -- kill、pkill和killall的比较

    kill命令用来“杀掉”指定进程PID的进程.终止一个前台进程可以使用Ctrl+C,终止一个后台进程就须用kill命令.kill命令是通过向进程发送指定的信号来结束相应进程的.在默认情况下,kill命 ...

  5. SVN系列学习(一)-SVN的安装与配置

    1.SVN的介绍 SVN是Subversion的简称,是一个开发源代码的版本控制系统,采用了分支管理系统. 文件保存在中央版本库,除了能记住文件和目录的每次修改以外,版本库非常像普通的文件服务器.你可 ...

  6. 6.11---字节输入流数据根据字节输出流存到文件中---io流概念及分类---文件存储的原理和记事本打开的原理---字节流读取文件的原理---文件复制的原理

  7. SAS学习笔记之《SAS编程与数据挖掘商业案例》(5)SAS宏语言、SQL过程

    SAS学习笔记之<SAS编程与数据挖掘商业案例>(5)SAS宏语言.SQL过程 1. 一个SAS程序可能包含一个或几个语言成分: DATA步或PROC步 全程语句 SAS组件语言(SCL) ...

  8. cmd 启动mysql环境变量配置

    win10系统:(其他系统类似,改环境变量就可以) 1.我的电脑,右键选择属性,进入系统页面 2.点击高级系统设置,进入系统属性页面 3.点击高级选项卡,点击环境变量,进入环境变量设置 4.选择系统变 ...

  9. ABP初始化

    默认认为你手中已经有abp-zero项目,当前4.6.0 angularJS切换到jquery 运行项目,初始化是跳转到~/App/common/views/layout/layout.cshtml, ...

  10. layer:好看的弹出窗口

    layer是一款web弹层组件,只需在调用时简单地配置相关参数,即可轻松实现丰富与便捷的操作体验. 这是layer的官方地址,里面的使用介绍非常详细(http://layer.layui.com/) ...