Trucking

Problem Description
A certain local trucking company would like to transport some goods on a cargo truck from one place to another. It is desirable to transport as much goods as possible each trip. Unfortunately, one cannot always use the roads in the shortest route: some roads may have obstacles (e.g. bridge overpass, tunnels) which limit heights of the goods transported. Therefore, the company would like to transport as much as possible each trip, and then choose the shortest route that can be used to transport that amount.

For the given cargo truck, maximizing the height of the goods transported is equivalent to maximizing the amount of goods transported. For safety reasons, there is a certain height limit for the cargo truck which cannot be exceeded.

 
Input
The input consists of a number of cases. Each case starts with two integers, separated by a space, on a line. These two integers are the number of cities (C) and the number of roads (R). There are at most 1000 cities, numbered from 1. This is followed by R lines each containing the city numbers of the cities connected by that road, the maximum height allowed on that road, and the length of that road. The maximum height for each road is a positive integer, except that a height of -1 indicates that there is no height limit on that road. The length of each road is a positive integer at most 1000. Every road can be travelled in both directions, and there is at most one road connecting each distinct pair of cities. Finally, the last line of each case consists of the start and end city numbers, as well as the height limit (a positive integer) of the cargo truck. The input terminates when C = R = 0.
 
Output
For each case, print the case number followed by the maximum height of the cargo truck allowed and the length of the shortest route. Use the format as shown in the sample output. If it is not possible to reach the end city from the start city, print "cannot reach destination" after the case number. Print a blank line between the output of the cases.
 
Sample Input
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 10
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 4
3 1
1 2 -1 100
1 3 10
0 0
 
Sample Output
Case 1:
maximum height = 7
length of shortest route = 20

Case 2:
maximum height = 4
length of shortest route = 8

Case 3:
cannot reach destination

 
题意:
   给出一无向图 每条路对卡车的高度都有限制 求从起点到终点 卡车最高的高度及行进的最短路 
 
题解:
    我们二分高度,  
  在这个高度下进行一次最短路,解决是否能到达 终点,能的话记录 路径长度
  更新答案
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<queue>
using namespace std ;
typedef long long ll; const int N = + ;
const int inf = 1e9 + ; int dis[N],head[N],vis[N],t,n,m,T;
struct ss{
int to,h,v,next;
}e[N];
void add(int u,int v,int h,int w) {
e[t].to = v;
e[t].next = head[u];
e[t].v = w;
e[t].h = h;
head[u] = t++;
}
int spfa(int x,int limt) {
queue<int >q;
for(int i = ; i <= n; i++) dis[i] = inf, vis[i] = ;
dis[x] = ;
q.push(x);
vis[x] = ;
while(!q.empty()) {
int k = q.front();
q.pop();vis[k] = ;
for(int i = head[k]; i; i = e[i].next) {
if(e[i].h < limt) continue;
if(dis[e[i].to] > dis[k] + e[i].v) {
dis[e[i].to] = dis[k] + e[i].v;
if(!vis[e[i].to]) {
vis[e[i].to] = ;
q.push(e[i].to);
}
}
}
}
return dis[T];
}
int main() {
int a,b,h,v,S,cas = ;
while(~scanf("%d%d",&n,&m)) {
if(!n || !m) break;
if (cas > ) printf ("\n");
t = ; memset(head,,sizeof(head));
for(int i = ; i <= m; i++) {
scanf("%d%d%d%d",&a,&b,&h,&v);
if(h == -) h = inf;
add(a,b,h,v);
add(b,a,h,v);
}
scanf("%d%d%d",&S,&T,&h);
int l = , r = h, ans = inf;
while(l < r) {
int mid = (l + r + ) >> ;
if(spfa(S,mid) != inf) l = mid, ans = dis[T];
else r = mid - ;
}
printf ("Case %d:\n", cas++);
if(ans != inf) printf ("maximum height = %d\nlength of shortest route = %d\n", l, ans);
else {
printf("cannot reach destination\n");
}
}
return ;
}

UVALive 4223 / HDU 2962 spfa + 二分的更多相关文章

  1. hdu 2962 Trucking (二分+最短路Spfa)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...

  2. UVALive - 4223(hdu 2926)

    ---恢复内容开始--- 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS ...

  3. hdu 2962 题解

    题目 题意 给出一张图,每条道路有限高,给出车子的起点,终点,最高高度,问在保证高度尽可能高的情况下的最短路,如果不存在输出 $ cannot  reach  destination $ 跟前面 $ ...

  4. UVALive 4223 Trucking 二分+spfa

    Trucking 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8& ...

  5. HDU - 2962 Trucking SPFA+二分

    Trucking A certain local trucking company would like to transport some goods on a cargo truck from o ...

  6. 二分+最短路 UVALive - 4223

    题目链接:https://vjudge.net/contest/244167#problem/E 这题做了好久都还是超时,看了博客才发现可以用二分+最短路(dijkstra和spfa都可以),也可以用 ...

  7. hdu 1839 Delay Constrained Maximum Capacity Path(spfa+二分)

    Delay Constrained Maximum Capacity Path Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 65 ...

  8. hdu 2962 最短路+二分

    题意:最短路上有一条高度限制,给起点和最大高度,求满足高度最大情况下,最短路的距离 不明白为什么枚举所有高度就不对 #include<cstdio> #include<cstring ...

  9. 【HDOJ1529】【差分约束+SPFA+二分】

    http://acm.hdu.edu.cn/showproblem.php?pid=1529 Cashier Employment Time Limit: 2000/1000 MS (Java/Oth ...

随机推荐

  1. MantisBT 问题分配显示 姓名

    MantisBT 在提交问题的时候,系统默认"分配"给备选账号,而不是姓名. 这样在使用的时候很不便. 能够通过改动配置文件来改变,找到MantisBT根文件夹下文件config_ ...

  2. 2016.03.10,英语,《Vocabulary Builder》Unit 05

    mal: means bad. malpractice [ˌmæl'præktɪs] n. 失职, 行为不当; malady ['mælədi] n. 病, 疾病, 弊病; malodorous [ˌ ...

  3. Linux下安装PHP7.1并做关联APACHE处理

    1.复制php压缩包到/usr/local/src 2.解压 tar -zxvf php-7.1.2.tar.gz 3.编译安装(请先安装apache和mysql) ./configure --pre ...

  4. ES等待任务——是master节点上的task任务

    等待中的任务编辑 有一些任务只能由主节点去处理,比如创建一个新的 索引或者在集群中移动分片.由于一个集群中只能有一个主节点,所以只有这一节点可以处理集群级别的元数据变动.在 99.9999% 的时间里 ...

  5. CodeForces--609C --Load Balancing(水题)

    Load Balancing Time Limit: 2000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Subm ...

  6. QT-简介

    前言:Qt是一款强大的跨平台gui(图形界面开发)开发工具. 一.安装说明 Qt安装包: qt-opensource-windows-x86-mingw492-5.6.1-1.exe -------- ...

  7. nginx报错日志:see security.limit_extensions

    访问出现部分.js.css等部分文件被拒绝错误日志如下: 19:20:13 [error] 1181#0: *287 FastCGI sent in stderr: "Access to t ...

  8. 关于Android对话框简单实用方法总结

    要显示一个对话框,首先需要在xx.xml下添加一个Button按钮,并添加一个对应id. 单次点击事件对话框: button.setOnClickListener(new View.OnClickLi ...

  9. Hello World Spring MVC

    1, Setup Development Environment 1.1, Java SDK | ~ @ yvan-mac (yvan) | => java -version java vers ...

  10. Linux中删除特殊符号文件名文件

    Linux 系统下的文件名长度最多可到256个字符.通常情况下,文件名的字符包括:字母.数字.“.”(点).“_”(下划线)和“-”(连字符). Linux 允许在文件名中使用除上述符号之外的其它符号 ...