Trucking

Problem Description
A certain local trucking company would like to transport some goods on a cargo truck from one place to another. It is desirable to transport as much goods as possible each trip. Unfortunately, one cannot always use the roads in the shortest route: some roads may have obstacles (e.g. bridge overpass, tunnels) which limit heights of the goods transported. Therefore, the company would like to transport as much as possible each trip, and then choose the shortest route that can be used to transport that amount.

For the given cargo truck, maximizing the height of the goods transported is equivalent to maximizing the amount of goods transported. For safety reasons, there is a certain height limit for the cargo truck which cannot be exceeded.

 
Input
The input consists of a number of cases. Each case starts with two integers, separated by a space, on a line. These two integers are the number of cities (C) and the number of roads (R). There are at most 1000 cities, numbered from 1. This is followed by R lines each containing the city numbers of the cities connected by that road, the maximum height allowed on that road, and the length of that road. The maximum height for each road is a positive integer, except that a height of -1 indicates that there is no height limit on that road. The length of each road is a positive integer at most 1000. Every road can be travelled in both directions, and there is at most one road connecting each distinct pair of cities. Finally, the last line of each case consists of the start and end city numbers, as well as the height limit (a positive integer) of the cargo truck. The input terminates when C = R = 0.
 
Output
For each case, print the case number followed by the maximum height of the cargo truck allowed and the length of the shortest route. Use the format as shown in the sample output. If it is not possible to reach the end city from the start city, print "cannot reach destination" after the case number. Print a blank line between the output of the cases.
 
Sample Input
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 10
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 4
3 1
1 2 -1 100
1 3 10
0 0
 
Sample Output
Case 1:
maximum height = 7
length of shortest route = 20

Case 2:
maximum height = 4
length of shortest route = 8

Case 3:
cannot reach destination

 
题意:
   给出一无向图 每条路对卡车的高度都有限制 求从起点到终点 卡车最高的高度及行进的最短路 
 
题解:
    我们二分高度,  
  在这个高度下进行一次最短路,解决是否能到达 终点,能的话记录 路径长度
  更新答案
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include<queue>
using namespace std ;
typedef long long ll; const int N = + ;
const int inf = 1e9 + ; int dis[N],head[N],vis[N],t,n,m,T;
struct ss{
int to,h,v,next;
}e[N];
void add(int u,int v,int h,int w) {
e[t].to = v;
e[t].next = head[u];
e[t].v = w;
e[t].h = h;
head[u] = t++;
}
int spfa(int x,int limt) {
queue<int >q;
for(int i = ; i <= n; i++) dis[i] = inf, vis[i] = ;
dis[x] = ;
q.push(x);
vis[x] = ;
while(!q.empty()) {
int k = q.front();
q.pop();vis[k] = ;
for(int i = head[k]; i; i = e[i].next) {
if(e[i].h < limt) continue;
if(dis[e[i].to] > dis[k] + e[i].v) {
dis[e[i].to] = dis[k] + e[i].v;
if(!vis[e[i].to]) {
vis[e[i].to] = ;
q.push(e[i].to);
}
}
}
}
return dis[T];
}
int main() {
int a,b,h,v,S,cas = ;
while(~scanf("%d%d",&n,&m)) {
if(!n || !m) break;
if (cas > ) printf ("\n");
t = ; memset(head,,sizeof(head));
for(int i = ; i <= m; i++) {
scanf("%d%d%d%d",&a,&b,&h,&v);
if(h == -) h = inf;
add(a,b,h,v);
add(b,a,h,v);
}
scanf("%d%d%d",&S,&T,&h);
int l = , r = h, ans = inf;
while(l < r) {
int mid = (l + r + ) >> ;
if(spfa(S,mid) != inf) l = mid, ans = dis[T];
else r = mid - ;
}
printf ("Case %d:\n", cas++);
if(ans != inf) printf ("maximum height = %d\nlength of shortest route = %d\n", l, ans);
else {
printf("cannot reach destination\n");
}
}
return ;
}

UVALive 4223 / HDU 2962 spfa + 二分的更多相关文章

  1. hdu 2962 Trucking (二分+最短路Spfa)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...

  2. UVALive - 4223(hdu 2926)

    ---恢复内容开始--- 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS ...

  3. hdu 2962 题解

    题目 题意 给出一张图,每条道路有限高,给出车子的起点,终点,最高高度,问在保证高度尽可能高的情况下的最短路,如果不存在输出 $ cannot  reach  destination $ 跟前面 $ ...

  4. UVALive 4223 Trucking 二分+spfa

    Trucking 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8& ...

  5. HDU - 2962 Trucking SPFA+二分

    Trucking A certain local trucking company would like to transport some goods on a cargo truck from o ...

  6. 二分+最短路 UVALive - 4223

    题目链接:https://vjudge.net/contest/244167#problem/E 这题做了好久都还是超时,看了博客才发现可以用二分+最短路(dijkstra和spfa都可以),也可以用 ...

  7. hdu 1839 Delay Constrained Maximum Capacity Path(spfa+二分)

    Delay Constrained Maximum Capacity Path Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 65 ...

  8. hdu 2962 最短路+二分

    题意:最短路上有一条高度限制,给起点和最大高度,求满足高度最大情况下,最短路的距离 不明白为什么枚举所有高度就不对 #include<cstdio> #include<cstring ...

  9. 【HDOJ1529】【差分约束+SPFA+二分】

    http://acm.hdu.edu.cn/showproblem.php?pid=1529 Cashier Employment Time Limit: 2000/1000 MS (Java/Oth ...

随机推荐

  1. UVA 1515 Pool construction 最大流跑最小割

    Pool construction You are working for the International Company for Pool Construction, a constructio ...

  2. iOS9中,swift判断相机,相册权限,选取图片为头像

    在iOS7以后要打开手机摄像头或者相册的话都需要权限,在iOS9中更是更新了相册相关api的调用 首先新建一个swift工程,在SB中放上一个按钮,并在viewController中拖出点击事件 ok ...

  3. Spyder调试快捷键

    Ctrl+1:  注释.取消注释 Ctrl+4/5:  块注释 / 取消块注释 F12: 断点 / 取消断点 F5: 运行 Ctrl+F5: 启动调试 Ctrl+F10: 单步调试,跳过函数内部实现 ...

  4. JSTL中的常用EL函数(fn:contains(str,subStr))

    转自:https://blog.csdn.net/u012843873/article/details/53289238 ① fn:toLowerCase ④fn:length fn:length函数 ...

  5. C# Parse and TryParse 方法详解

    工作中遇到的常用方法: Parse and TryParse TryParse 方法类似于 Parse 方法,不同之处在于 TryParse 方法在转换失败时不引发异常 /// <summary ...

  6. PHP中出现Notice: Undefined index的三种解决办法

    前一段做的一个PHP程序在服务器运行正常,被别人拿到本机测试的时候总是出现“Notice: Undefined index:”这样的警告,这只是一个因为PHP版本不同而产生的警告(NOTICE或者WA ...

  7. BZOJ 4004 高斯消元

    思路: 排个序 消元 完事~ 但是! 坑爹精度毁我人生 我hhhh他一脸 红红火火恍恍惚惚 //By SiriusRen #include <cmath> #include <cst ...

  8. mybatis通用的crud的接口

    http://git.oschina.net/jrl/mybatis-mapper https://www.oschina.net/p/mybatis-plus

  9. css元素垂直居中方法

    1.Line-height 适用情景:单行文字垂直居中技巧 这个方式应该是最多人知道的了,常见于单行文字的应用,像是按钮这一类对象,或者是下拉框.导航此类元素最常见到的方式了.此方式的原理是在于将单行 ...

  10. (转载) listview实现微信朋友圈嵌套

    listview实现微信朋友圈嵌套 标签: androidlistview 2016-01-06 00:05 572人阅读 评论(0) 收藏 举报  分类: android(8)  版权声明:本文为博 ...