[洛谷P2045]方格取数加强版
题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0。这个人共取n次,求取得的数的最大总和。
解题思路:由于取多少次不确定,所以不能用dp。
我们发现,一个格子只能从左边或上面走来,且数只能取到一次,那么我们可以把此题转化为最大费用最大流问题。首先拆点,将一个点拆成x和y,然后从x到y连一条容量为1,流量为x(x为这格的数)的边,然后再连一条容量为inf,费用为0的边,这样即可保证一个点可以走多次,而数只能取一次。然后连接a和b时,从a的y向b的x连一条容量为inf,费用为0的边。最后跑最大费用最大流即可。
实现时对于(i,j),我们把这个点的x编号为$(i-1)*n+j$,y编号为$(i-1)*n+j+n^2$即可。
以下为EK算法代码。
C++ Code:
#include<cstdio>
#include<vector>
#include<queue>
#include<string.h>
using namespace std;
#define inf 0x3f3f3f3f
#define N 1000000
struct edge{
int from,to,cap,cost,nxt;
}e[N];
int n,k,dis[N],a[N],pree[N],head[N],cnt;
bool vis[N];
queue<int>q;
inline void addedge(int from,int to,int cap,int cost){
e[++cnt]=(edge){from,to,cap,cost,head[from]};
head[from]=cnt;
e[++cnt]=(edge){to,from,0,-cost,head[to]};
head[to]=cnt;
}
bool spfa(int s,int t,int& flow,int& cost){
memset(pree,0,sizeof(pree));
memset(a,0x3f,sizeof(a));
memset(dis,200,sizeof(dis));
memset(vis,0,sizeof(vis));
vis[s]=1;
dis[s]=0;
q.push(s);
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=0;
for(int i=head[u];i;i=e[i].nxt){
if(e[i].cap>0&&dis[e[i].to]<dis[u]+e[i].cost){
dis[e[i].to]=dis[u]+e[i].cost;
pree[e[i].to]=i;
if(a[u]>e[i].cap)a[e[i].to]=e[i].cap;else a[e[i].to]=a[u];
if(!vis[e[i].to]){
vis[e[i].to]=1;
q.push(e[i].to);
}
}
}
}
if(dis[t]<1)return false;
flow+=a[t];
cost+=a[t]*dis[t];
for(int i=t;i!=s;i=e[pree[i]].from){
e[pree[i]].cap-=a[t];
e[pree[i]^1].cap+=a[t];
}
return true;
}
int main(){
cnt=1;
scanf("%d%d",&n,&k);
int m=n*n;
for(int i=1;i<=n;++i){
for(int j=1;j<=n;++j){
int x;
scanf("%d",&x);
addedge((i-1)*n+j,(i-1)*n+j+m,inf,0);
addedge((i-1)*n+j,(i-1)*n+j+m,1,x);
if(i>1){
addedge((i-2)*n+j+m,(i-1)*n+j,inf,0);
}
if(j>1){
addedge((i-1)*n+j-1+m,(i-1)*n+j,inf,0);
}
if(i==1&&j==1){
addedge(0,1,inf,0);
}
}
}
int flow=0,cost=0;
while(k--)
if(!spfa(0,m<<1,flow,cost))break;
printf("%d\n",cost);
return 0;
}
[洛谷P2045]方格取数加强版的更多相关文章
- 洛谷 P2045 方格取数加强版【费用流】
题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...
- 洛谷 - P2045 - 方格取数加强版 - 费用流
原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...
- 洛谷P2045 方格取数加强版(费用流)
题意 题目链接 Sol 这题能想到费用流就不难做了 从S向(1, 1)连费用为0,流量为K的边 从(n, n)向T连费用为0,流量为K的边 对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次, ...
- 洛谷P2045 方格取数加强版 最小费用流
Code: #include<cstdio> #include<cstring> #include<algorithm> #include<queue> ...
- P2045 方格取数加强版
P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- 洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- 洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
随机推荐
- 我的Java历程_spring+springmvc+mybatils整合问题
作为一个初学框架的菜鸟,有时候遇到异常时真的不好判断问题的出处,因为一般框架不就是导jar包,配置文件嘛,对于一个新手来说要看懂错误出现的含义韩式有些难的,lz昨天整合spring+mybatils时 ...
- 安卓、safari和微信各个浏览器的设计标准
- 队列(Queue)-c实现
相对而言,队列是比较简单的. 代码还有些warning,我改不动,要找gz帮忙. #include <stdio.h> typedef struct node { int data; st ...
- visual studio 2015下python编程的中文字符串问题
visual studio 2015强大的编程功能,编写起python来也是非常方便的,但其对中文字符的支持不是很好,经常发生莫名其妙的错误,最常见的错误是不报错,也不执行代码. 代码简单如下: x= ...
- Inter-partition communication in multi-core processor
A multi-core processor includes logical partitions that have respective processor cores, memory area ...
- 今天遇到的一个诡异的core和解决 std::sort
其实昨天开发pds,就碰到了core,我还以为是内存不够的问题,或者其他问题. 今天把所有代码挪到了as这里,没想到又出core了. 根据直觉,我就觉得可能是std::sort这边的问题. 上网一搜, ...
- 集合框架(List和Set)
一.概述 集合是一种可变数据项的容器,具有统一的父类接口Collection<E>(Map并没有继承之),与其子集合的关系例如以下 图.集合的特点是长度可变,能够存储多种类型的对象(不加泛 ...
- iOS - 自己定义alertView,继承自UIView,能够加入子视图,标题图片+文字
这个更简单,能够看下demo https://github.com/DYLAN-LWB/WBAlertView 自己定义alertView,继承自UIView,能够在消息区域加入子视图:a ...
- swift 给导航添加item,实现界面的跳转
//给导航添加item var rightItem = UIBarButtonItem(title: "First", style: UIBarButtonItem ...
- 10、匿名内部类、枚举类、日期、Math、Random、String、equals、StringBuffer、包装类、对象数组、克隆,标准输出3
1对象的克隆(clone) 单纯的同类的两个对象a0 a00,a0=a00只是栈指向同一个堆,而不是开辟两个新堆,修改其中一个,另一个也会受牵连. 需要重写Clone()方法,并且实现Cloneabl ...