题目描述:

Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在nn个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的价格

Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多k种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?

题解:

说实话还是一道比较明显的分层图最短路。
其实也可以不按分层图做,直接暴力开一个二维距离 $d[i][j]$,代表第 $i$ 个节点,用过 $k$ 次免费路线即可。
不过这样的话好像有些麻烦,而且代码不太好写。

讲一下正解: 分层图最短路。
我们观察到 $k$ 很小,我们就从 $k$ 入手分析。
对于每一个 $k$ ,我们都建立一个由源点到汇点的有向图,而特别地,层与层之间都有一些边权为0 的边,代表免费走的边。
由于这些免费走的边都是由第 $i$ 层图单向连到第 $i+1$ 层图的,我们就不必担心多走免费路线。

Code:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#include<string>
const int maxn=3000000;
using namespace std; void setIO(string a){
freopen((a+".in").c_str(),"r",stdin);
}
int s,t,cnt;
int head[maxn], to[maxn], nex[maxn], val[maxn];
void add_edge(int u,int v,int c){
nex[++cnt]=head[u],head[u]=cnt,to[cnt]=v,val[cnt]=c;
}
int d[maxn];
int inq[maxn];
deque<int>Q;
void spfa()
{
memset(d,0x3f,sizeof(d));
d[s]=0,inq[s]=1;Q.push_back(s);
while(!Q.empty())
{
int u=Q.front();Q.pop_front();inq[u]=0;
for(int v=head[u];v;v=nex[v])
if(d[to[v]]>d[u]+val[v])
{
d[to[v]]=d[u]+val[v];
if(!inq[to[v]])
{
inq[to[v]]=1;
if(Q.empty()||d[Q.front()]>=d[to[v]])Q.push_front(to[v]);
else Q.push_back(to[v]);
}
}
}
}
int main(){
//setIO("input");
int n,m,k;
scanf("%d%d%d%d%d",&n,&m,&k,&s,&t);
for(int i=1;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add_edge(a,b,c);
add_edge(b,a,c);
for(int j=1;j<=k;j++)
{
add_edge(a+(j-1)*n,b+j*n,0);
add_edge(b+(j-1)*n,a+j*n,0);
add_edge(a+j*n,b+j*n,c);
add_edge(b+j*n,a+j*n,c);
}
}
spfa();
printf("%d\n",d[t+n*k]);
return 0;
}

  

[JLOI2011]飞行路线 分层图最短路的更多相关文章

  1. BZOJ2763: [JLOI2011]飞行路线(分层图 最短路)

    题意 题目链接 Sol 分层图+最短路 建\(k+1\)层图,对于边\((u, v, w)\),首先在本层内连边权为\(w\)的无向边,再各向下一层对应的节点连边权为\(0\)的有向边 如果是取最大最 ...

  2. P4568 [JLOI2011]飞行路线 分层图最短路

    思路:裸的分层图最短路 提交:1次 题解: 如思路 代码: #include<cstdio> #include<iostream> #include<cstring> ...

  3. bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MB Description Alice和Bob现在要乘飞机旅行,他们选择了一家相 ...

  4. 【bzoj2763】[JLOI2011]飞行路线 分层图最短路

    题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  5. BZOJ2763[JLOI2011]飞行路线 [分层图最短路]

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2523  Solved: 946[Submit][Statu ...

  6. [JLOI2011]飞行路线 (分层图,最短路)

    题目链接 Solution 建立 \(k+1\) 层图跑 \(Dijkstra\) 就好了. Code #include<bits/stdc++.h> #define ll long lo ...

  7. [bzoj2763][JLOI2011]飞行路线——分层图最短路

    水题.不多说什么. #include <bits/stdc++.h> using namespace std; const int maxn = 10010; const int maxk ...

  8. bzoj2763 [JLOI]飞行路线 分层图最短路

    问题描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  9. P4568 飞行路线 分层图最短路

    P4568 飞行路线 分层图最短路 分层图最短路 问题模型 求最短路时,可有\(k\)次更改边权(减为0) 思路 在普通求\(Dijkstra\)基础上,\(dis[x][j]\)多开一维\(j\)以 ...

随机推荐

  1. m_Orchestrate learning system---六、善用组件插件的好处是什么

    m_Orchestrate learning system---六.善用组件插件的好处是什么 一.总结 一句话总结: 1.面包屑导航是什么? 知道它是什么自然就知道它怎么用了 2.表格里面的栏目能能点 ...

  2. Codeforces 676E The Last Fight Between Human and AI 规律

    链接 Codeforces 676E The Last Fight Between Human and AI 题意 给一个多项式,有些系数不确定.人和机器轮流填系数,系数可以是任何数,问是否能使得最后 ...

  3. spring boot多数据源配置示例

    1. application.properties #\u4E3B\u5E93\u914D\u7F6E spring.datasource.primary.url=jdbc:mysql://mysql ...

  4. spring 发送邮件代码示例(带附件和不带附件的)

    import javax.mail.MessagingException; import javax.mail.internet.MimeMessage; import org.springframe ...

  5. zookeeper的选举机制

    1)半数机制:集群中半数以上机器存活,集群可用.所以zookeeper适合装在奇数台机器上. 2)Zookeeper虽然在配置文件中并没有指定master和slave.但是,zookeeper工作时, ...

  6. JavaScript / JQuery事件委托如何实现?

    一:什么是事件委托? 事件委托是利用事件冒泡,只指定一个事件处理程序来管理某一类型的所有事件. 事件委托就是利用事件冒泡原理实现的! 事件冒泡:就是事件从最深节点开始,然后逐步向上传播事件: 例:页面 ...

  7. Android RecyclerView 设置item间隔的方法

    RecyclerView大家常用,但是如何给加载出来的item增加间隔很多人都不知道,下面是方法,直接上代码了: LinearLayoutManager layoutManager = new Lin ...

  8. 内部div自动扩张剩余宽度

    <div id="container"> <div id="left">左边</div> <div id=" ...

  9. 【原创】JMS发布者订阅者【异步接收消息】

    发布订阅模式和PTP方式不同之处为后者依赖于一个Topic话题: package com.thunisoft.jms.mine.topic; import java.util.HashMap; imp ...

  10. the prblem 3n+1

    题目描述计算机科学中的问题通常被归类为属于某一类问题(例如,NP,不可解,递归).在这个问题中,您将分析算法的属性,该算法的分类对于所有可能的输入都是未知的. 考虑下面的算法: 1.输入n 2.输出n ...