题目描述:

Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在nn个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的价格

Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多k种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?

题解:

说实话还是一道比较明显的分层图最短路。
其实也可以不按分层图做,直接暴力开一个二维距离 $d[i][j]$,代表第 $i$ 个节点,用过 $k$ 次免费路线即可。
不过这样的话好像有些麻烦,而且代码不太好写。

讲一下正解: 分层图最短路。
我们观察到 $k$ 很小,我们就从 $k$ 入手分析。
对于每一个 $k$ ,我们都建立一个由源点到汇点的有向图,而特别地,层与层之间都有一些边权为0 的边,代表免费走的边。
由于这些免费走的边都是由第 $i$ 层图单向连到第 $i+1$ 层图的,我们就不必担心多走免费路线。

Code:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#include<string>
const int maxn=3000000;
using namespace std; void setIO(string a){
freopen((a+".in").c_str(),"r",stdin);
}
int s,t,cnt;
int head[maxn], to[maxn], nex[maxn], val[maxn];
void add_edge(int u,int v,int c){
nex[++cnt]=head[u],head[u]=cnt,to[cnt]=v,val[cnt]=c;
}
int d[maxn];
int inq[maxn];
deque<int>Q;
void spfa()
{
memset(d,0x3f,sizeof(d));
d[s]=0,inq[s]=1;Q.push_back(s);
while(!Q.empty())
{
int u=Q.front();Q.pop_front();inq[u]=0;
for(int v=head[u];v;v=nex[v])
if(d[to[v]]>d[u]+val[v])
{
d[to[v]]=d[u]+val[v];
if(!inq[to[v]])
{
inq[to[v]]=1;
if(Q.empty()||d[Q.front()]>=d[to[v]])Q.push_front(to[v]);
else Q.push_back(to[v]);
}
}
}
}
int main(){
//setIO("input");
int n,m,k;
scanf("%d%d%d%d%d",&n,&m,&k,&s,&t);
for(int i=1;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add_edge(a,b,c);
add_edge(b,a,c);
for(int j=1;j<=k;j++)
{
add_edge(a+(j-1)*n,b+j*n,0);
add_edge(b+(j-1)*n,a+j*n,0);
add_edge(a+j*n,b+j*n,c);
add_edge(b+j*n,a+j*n,c);
}
}
spfa();
printf("%d\n",d[t+n*k]);
return 0;
}

  

[JLOI2011]飞行路线 分层图最短路的更多相关文章

  1. BZOJ2763: [JLOI2011]飞行路线(分层图 最短路)

    题意 题目链接 Sol 分层图+最短路 建\(k+1\)层图,对于边\((u, v, w)\),首先在本层内连边权为\(w\)的无向边,再各向下一层对应的节点连边权为\(0\)的有向边 如果是取最大最 ...

  2. P4568 [JLOI2011]飞行路线 分层图最短路

    思路:裸的分层图最短路 提交:1次 题解: 如思路 代码: #include<cstdio> #include<iostream> #include<cstring> ...

  3. bzoj 2763: [JLOI2011]飞行路线 -- 分层图最短路

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MB Description Alice和Bob现在要乘飞机旅行,他们选择了一家相 ...

  4. 【bzoj2763】[JLOI2011]飞行路线 分层图最短路

    题目描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  5. BZOJ2763[JLOI2011]飞行路线 [分层图最短路]

    2763: [JLOI2011]飞行路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2523  Solved: 946[Submit][Statu ...

  6. [JLOI2011]飞行路线 (分层图,最短路)

    题目链接 Solution 建立 \(k+1\) 层图跑 \(Dijkstra\) 就好了. Code #include<bits/stdc++.h> #define ll long lo ...

  7. [bzoj2763][JLOI2011]飞行路线——分层图最短路

    水题.不多说什么. #include <bits/stdc++.h> using namespace std; const int maxn = 10010; const int maxk ...

  8. bzoj2763 [JLOI]飞行路线 分层图最短路

    问题描述 Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一定的 ...

  9. P4568 飞行路线 分层图最短路

    P4568 飞行路线 分层图最短路 分层图最短路 问题模型 求最短路时,可有\(k\)次更改边权(减为0) 思路 在普通求\(Dijkstra\)基础上,\(dis[x][j]\)多开一维\(j\)以 ...

随机推荐

  1. 详解JSP九个内置对象

    [JSP]☆★之详解九个内置对象       在web开发中,为方便开发者,JSP定义了一些由JSP容器实现和管理的内置对象,这些对象可以直接被开发者使用,而不需要再对其进行实例化!本文详解,JSP2 ...

  2. [JZOJ 5893] [NOIP2018模拟10.4] 括号序列 解题报告 (Hash+栈+map)

    题目链接: https://jzoj.net/senior/#main/show/5893 题目: 题解: 考虑暴力怎么做,我们枚举左端点,维护一个栈,依次加入元素,与栈顶元素和栈内第二个元素相同时弹 ...

  3. Z 字形变换 C++实现 java实现 leetcode系列(六)

    Z 字形变换  java实现 C++实现  将一个给定字符串根据给定的行数,以从上往下.从左到右进行 Z 字形排列. 比如输入字符串为 "LEETCODEISHIRING" 行数为 ...

  4. SpringCloud学习笔记(18)----Spring Cloud Netflix之服务网关Zuul原理

    1. Zuul的工作机制 Zuul提供了一个框架,可以对过滤器进行动态的加载,编译,运行.过滤器之间没有直接的相互通信,他们是通过一个RequestContext的静态类来进行数据传递的.Requet ...

  5. [ZJOI2015]诸神眷顾的幻想乡 广义后缀自动机_DFS_语文题

    才知道题目中是只有20个叶子节点的意思QAQ.... 这次的广义后缀自动机只是将 last 设为 1, 并重新插入. 相比于正统的写法,比较浪费空间. Code: #include <cstdi ...

  6. 路飞学城Python-Day11

    [44.函数-生成器] 需求:有一个列表 [0,1,2,3,4,5,6,7,8,9],对这个列表循环+1 li = [0,1,2,3,4,5,6,7,8,9] li = map(lambda x:x+ ...

  7. SKU和SPU表的设计

    1.什么是SKU,SPU SKU:Stock Keeping Unit (库存量单位)SKU即库存进出计量的单位,可以是以件.盒.托盘等为单位,是物理上不可分割的最小存货单元.在使用时要根据不同业态, ...

  8. 关于Vue中父子组件相互传值

    Header为子组件,Home为父组件,通过子组件调用父组件 运行结果如下 下面是父组件调用子组件的案例 通过button按钮的click事件 图一是父组件Home中的run方法,图二是msg和fun ...

  9. CF1000G Two-Paths (树形DP)

    题目大意:给你一棵树,点有点权$a_{i}$,边有边权$w_{e}$,定义一种路径称为$2-path$,每条边最多经过2次且该路径的权值为$\sum _{x} a_{x}\;-\;\sum_{e}w_ ...

  10. AES对称加密util

    package cn.com.qmhd.oto.common; import java.security.Key; import java.security.NoSuchAlgorithmExcept ...