算法说明

  线性回归是利用称为线性回归方程的函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析方法,只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归,在实际情况中大多数都是多元回归。

  线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Learning)。这类分析中训练数据集中给出的数据类型是确定的。机器学习的目标是,对于给定的一个训练数据集,通过不断的分析和学习产生一个联系属性集合和类标集合的分类函数(Classification Function)或预测函数)Prediction Function),这个函数称为分类模型(Classification Model——或预测模型(Prediction Model)。通过学习得到的模型可以是一个决策树、规格集、贝叶斯模型或一个超平面。通过这个模型可以对输入对象的特征向量预测或对对象的类标进行分类。

  回归问题中通常使用最小二乘(Least Squares)法来迭代最优的特征中每个属性的比重,通过损失函数(Loss Function)或错误函数(Error Function)定义来设置收敛状态,即作为梯度下降算法的逼近参数因子。

实例介绍

  该例子给出了如何导入训练集数据,将其解析为带标签点的RDD,然后使用了LinearRegressionWithSGD 算法来建立一个简单的线性模型来预测标签的值,最后计算了均方差来评估预测值与实际值的吻合度。

  线性回归分析的整个过程可以简单描述为如下三个步骤:

  (1)寻找合适的预测函数,即上文中的 h(x) ,用来预测输入数据的判断结果。这个过程是非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式,比如是线性函数还是非线性函数,若是非线性的则无法用线性回归来得出高质量的结果。

  (2)构造一个Loss函数(损失函数),该函数表示预测的输出(h)与训练数据标签之间的偏差,可以是二者之间的差(h-y)或者是其他的形式(如平方差开方)。综合考虑所有训练数据的“损失”,将Loss求和或者求平均,记为 J(θ) 函数,表示所有训练数据预测值与实际类别的偏差。

  (3)显然, J(θ) 函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要做的是找到 J(θ) 函数的最小值。找函数的最小值有不同的方法,Spark中采用的是梯度下降法(stochastic gradient descent,SGD)。

程序代码

import org.apache.log4j.{Level, Logger}
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors object LinearRegression {
def main(args:Array[String]): Unit ={
// 屏蔽不必要的日志显示终端上
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF) // 设置运行环境
val conf = new SparkConf().setAppName("Kmeans").setMaster("local[4]")
val sc = new SparkContext(conf) // Load and parse the data
val data = sc.textFile("/home/hadoop/upload/class8/lpsa.data")
val parsedData = data.map { line =>
val parts = line.split(',')
LabeledPoint(parts().toDouble, Vectors.dense(parts().split(' ').map(_.toDouble))) } // Building the model
val numIterations =
val model = LinearRegressionWithSGD.train(parsedData, numIterations) // Evaluate model on training examples and compute training error
val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
} val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), )}.reduce (_ + _) / valuesAndPreds.count
println("training Mean Squared Error = " + MSE) sc.stop() } }

执行情况

  第一步   启动Spark集群

$cd /app/hadoop/spark-1.1.

$sbin/start-all.sh

  第二步   在IDEA中设置运行环境

在IDEA运行配置中设置LinearRegression运行配置,由于读入的数据已经在程序中指定,故在该设置界面中不需要设置输入参数

         

  第三步   执行并观察输出

Spark MLlib回归算法LinearRegression的更多相关文章

  1. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

  2. spark mllib k-means算法实现

    package iie.udps.example.spark.mllib; import java.util.regex.Pattern; import org.apache.spark.SparkC ...

  3. Spark MLlib基本算法【相关性分析、卡方检验、总结器】

    一.相关性分析 1.简介 计算两个系列数据之间的相关性是统计中的常见操作.在spark.ml中提供了很多算法用来计算两两的相关性.目前支持的相关性算法是Pearson和Spearman.Correla ...

  4. Spark 实践——基于 Spark MLlib 和 YFCC 100M 数据集的景点推荐系统

    1.前言 上接 YFCC 100M数据集分析笔记 和 使用百度地图api可视化聚类结果, 在对 YFCC 100M 聚类出的景点信息的基础上,使用 Spark MLlib 提供的 ALS 算法构建推荐 ...

  5. FP-Growth in Spark MLLib

    并行FP-Growth算法思路 上图的单线程形成的FP-Tree. 分布式算法事实上是对FP-Tree进行分割,分而治之 首先,假设我们只关心...|c这个conditional transactio ...

  6. Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)

    Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基 ...

  7. Spark Mllib逻辑回归算法分析

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3816289.html 本文以spark 1.0.0版本MLlib算法为准进行分析 一.代码结构 逻辑回归 ...

  8. Spark机器学习(3):保序回归算法

    保序回归即给定了一个无序的数字序列,通过修改其中元素的值,得到一个非递减的数字序列,要求是使得误差(预测值和实际值差的平方)最小.比如在动物身上实验某种药物,使用了不同的剂量,按理说剂量越大,有效的比 ...

  9. 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)

    梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...

随机推荐

  1. SSRS 报表 如何匿名查看

    SSRS 报表 如何匿名查看 昨晚一直研究怎么能匿名访问报表然后给客户看呢? 研究了好几种办法 我试过的分为三种,其中推荐我认为相对可控一点. .修改SSRS配置文件来禁止他验证登陆用户权限 操作过的 ...

  2. 浅谈贝塞尔曲线以及iOS中粘性动画的实现

    关于贝塞尔曲线,网上相关的文章很多,这里我主要想用更简单的方法让大家理解贝塞尔曲线,当然,这仅仅是我个人的理解,如有错误的地方还请大家能够帮忙指出来,这样大家才能一起进步. 贝塞尔曲线,常用到的可分为 ...

  3. <Sicily>Funny Game

    一.题目描述 Two players, Singa and Suny, play, starting with two natural numbers. Singa, the first player ...

  4. [JSOI2018]潜入行动 树形DP_复杂计数

    code #include <cstdio> #include <algorithm> #include <cstring> #include <string ...

  5. Linux中常用命令(文件)

    1.cat 显示出文件的全部内容 (1)格式:cat 文件名 -n 显示行号 (2)特点:一次性显示所有文件内容 2.tac 从最后一行倒着显示文件全部内容 3.more 全屏方式分页显示文件内容 回 ...

  6. MFC Wizard创建的空应用程序中各个文件内容的解析

    创建的MFC应用程序名为:wd,那么: 一.wd.h解析 // wd.h : main header file for the WD application // #if !defined(AFX_W ...

  7. Light oj 1138 - Trailing Zeroes (III) 【二分查找好题】【 给出N!末尾有连续的Q个0,让你求最小的N】

    1138 - Trailing Zeroes (III) PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 ...

  8. JAVA类库LinkList的基本实现

    写完调试了好久,边界不优点理,具体的请看JDK类库,下面仅仅是基本实现: import java.util.Iterator; /** * 类名:MyLinkedList 说明:LinkedList的 ...

  9. 面试基础_03实现strcpy、strcat、strcmp、strlen

    实现代码例如以下: /************************************************************************* > File Name: ...

  10. IDEA中的maven web 项目中如何设置自己的本地仓库

    我们在创建maven项目的时候如何不使用系统指定的本地仓库,而使用自己设置的仓库呢,这里小女子就来进行讲解一下吧! 讲解一:你要想找到settings.xml你就要自己我去官网上去下载apache-m ...