题目大意:

求n!在b进制下末尾有多少个0

https://blog.csdn.net/qq_40679299/article/details/81167283

一个数在十进制下末尾0的个数取决于10的幂的个数 即 1500=15*10^2 与两个0

在任意进制下也是 即n!在b进制下 n!=a*b^x 那么末尾0的个数就是 x

若b能分解出质因数 b1 b2 b3 ...

那么 a*b^x = a*(b1^x1 * b2^x2 * b3^x3 ... )^x = a*(b1^(x1*x) * b2^(x2*x) * b3^(x3*x) ... )

(x1表示能在b中分解出x1个b1...)

又可化成 A1*(b1^(x1*x)) 或A2*(b2^(x2*x))或 A3*(b3^(x3*x))的形式 即 A*B^X

对于特定的B 通过getcnt()可以求X 对于b1可求得X1 那么x=X1/x1

A的可能值有很多如A1 A2 A2 使得 n!=A*B^X解得的X也有多种

要使它们最终都满足 那么x应该是 X1/x1 X2/x2 X3/x3 ... 中最小的一个

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long
#define mem(i,j) memset(i,j,sizeof(i))
const int mod=1e9+;
const LL maxn=1e18+;
const LL maxm=1e12+;
LL n, b;
LL pri[], ind=;
LL cnt[];
void get_pri(LL n) {
mem(pri,); mem(cnt,);
for(LL i=;i*i<=n;i++) {
while(n%i==)
pri[ind]=i, cnt[ind]++, n=n/i;
if(cnt[ind]) ind++;
}
if(n>) pri[ind]=n, cnt[ind++]=;
} // 分解质因数
LL getcnt(LL p,LL n){
LL res=;
while(n) res+=n/p, n/=p;
return res;
} // n!能分解出res个p
int main()
{
while(~scanf("%I64d%I64d",&n,&b)) {
ind=; get_pri(b); //printf("%d\n",ind);
LL ans=maxn;
for(LL i=;i<ind;i++)
ans=min(ans,getcnt(pri[i],n)/cnt[i]);
printf("%I64d\n",ans);
} return ;
}

CF#538 C - Trailing Loves (or L'oeufs?) /// 分解质因数的更多相关文章

  1. Codeforces Round #538 (Div. 2) C. Trailing Loves (or L'oeufs?) (分解质因数)

    题目:http://codeforces.com/problemset/problem/1114/C 题意:给你n,m,让你求n!换算成m进制的末尾0的个数是多少(1<n<1e18    ...

  2. CF 1114 C. Trailing Loves (or L'oeufs?)

    C. Trailing Loves (or L'oeufs?) 链接 题意: 问n!化成b进制后,末尾的0的个数. 分析: 考虑十进制的时候怎么求的,类比一下. 十进制转化b进制的过程中是不断mod ...

  3. C. Trailing Loves (or L'oeufs?) (质因数分解)

    C. Trailing Loves (or L'oeufs?) 题目传送门 题意: 求n!在b进制下末尾有多少个0? 思路: 类比与5!在10进制下末尾0的个数是看2和5的个数,那么 原题就是看b进行 ...

  4. CF#538(div 2) C. Trailing Loves (or L'oeufs?) 【经典数论 n!的素因子分解】

    任意门:http://codeforces.com/contest/1114/problem/C C. Trailing Loves (or L'oeufs?) time limit per test ...

  5. Trailing Loves (or L'oeufs?)

    The number "zero" is called "love" (or "l'oeuf" to be precise, literal ...

  6. C. Trailing Loves (or L'oeufs?)

    题目链接:http://codeforces.com/contest/1114/problem/C 题目大意:给你n和b,让你求n的阶乘,转换成b进制之后,有多少个后置零. 具体思路:首先看n和b,都 ...

  7. Trailing Loves (or L'oeufs?) CodeForces - 1114C (数论)

    大意: 求n!在b进制下末尾0的个数 等价于求n!中有多少因子b, 素数分解一下, 再对求出所有素数的最小因子数就好了 ll n, b; vector<pli> A, res; void ...

  8. Codeforces - 1114C - Trailing Loves (or L'oeufs?) - 简单数论

    https://codeforces.com/contest/1114/problem/C 很有趣的一道数论,很明显是要求能组成多少个基数. 可以分解质因数,然后统计各个质因数的个数. 比如8以内,有 ...

  9. 【Codeforces 1114C】Trailing Loves (or L'oeufs?)

    [链接] 我是链接,点我呀:) [题意] 问你n!的b进制下末尾的0的个数 [题解] 证明:https://blog.csdn.net/qq_40679299/article/details/8116 ...

随机推荐

  1. 转 loadrunner11 录制 chrome 浏览器

    chrome不设置代理的原始状态 图1 [LoadRunner]解决LR11无法录制Chrome浏览器脚本问题   LoadRunner录制脚本时,遇到高版本的IE.FireFox,或者Chrome浏 ...

  2. Javascript基础二(程序的三大结构)

    程序的三大结构: 顺序结构,选择结构,循环结构 程序的单分支结构-if语句:       当条件判断为真true时,执行花括号内的语句,如果条件为假false,跳过花括号内的语句       if(条 ...

  3. ScrollView嵌套listview显示一行bug

    首先看看修复bug之后的显示对比图,结果一目了然 显示一行之前 修改bug之后 主要就是ScrollView嵌套listview显示计算  直接上代码   一目了然 <com.wechaotou ...

  4. 从零开始搭建系统2.8——HDFS安装及配置

    从零开始搭建系统2.8——HDFS安装及配置

  5. pickle模块 和json模块

    pickle和json序列号 json模块是所有语言通用的,可以用来把一些数据转成字符串存储在文件中 import json l=[,,] with open('t3',mode='w',encodi ...

  6. linux配置java环境变量(详细)(转)

    linux配置java环境变量(详细) 一. 解压安装jdk 在shell终端下进入jdk-6u14-linux-i586.bin文件所在目录, 执行命令 ./jdk-6u14-linux-i586. ...

  7. C++如何阻止一个类被实例化

    (1)定义一个无用的抽象函数,使得类成为抽象类 (2)将构造函数定义为private. 为什么要这样做? 一些工具类,没有被实例化的必要.

  8. leetcode-160周赛-5239-循环码排列

    题目描述: 参考格雷编码: class Solution: def circularPermutation(self, n: int, start: int) -> List[int]: res ...

  9. Vivado利用IP自带的示例工程和仿真

    有时候想查看IP的特性和功能,又不想自己写testbench,Vivado自带的IP示例工程就能派上用场,原来一直不知道怎么打开IP的示例工程 第一步:在原有的工程中新建IP,按照你想要的IP属性,例 ...

  10. 对AngularJs的简单了解

    一.简单介绍 AngularJS是为了克服HTML在构建应用上的不足而设计的.HTML是一门很好的为静态文本展示设计的声明式语言,但要构建WEB应用的话它就显得乏力了.所以我做了一些工作(你也可以觉得 ...