目录

前文列表

分布式任务队列 Celery

分布式任务队列 Celery —— 详解工作流

前言

紧接前文,继续看 Celery 应用基础,下列样例依旧从前文 proj 中进行修改。

Celery 的周期(定时)任务

Celery 周期任务功能由 Beat 任务调度器模块支撑,Beat 是一个服务进程,负责周期性启动 beat_schedule 中定义的任务。

e.g.

# filename: app_factory.py
from __future__ import absolute_import
from celery import Celery
from kombu import Queue, Exchange def make_app():
app = Celery('proj')
app.config_from_object('proj.celeryconfig') default_exchange = Exchange('default', type='direct')
web_exchange = Exchange('task', type='direct')
app.conf.task_default_queue = 'default'
app.conf.task_default_exchange = 'default'
app.conf.task_default_routing_key = 'default' app.conf.task_queues = (
Queue('default', default_exchange, routing_key='default'),
Queue('high_queue', web_exchange, routing_key='hign_task'),
Queue('low_queue', web_exchange, routing_key='low_task'),
) # 设定 Beat 时区,默认为 UTC 时区
app.conf.timezone = 'Asia/Shanghai’
# 在 beat_schedule 中声明周期任务
app.conf.beat_schedule = {
# 周期任务 Friendly Name
'periodic_task_add': {
# 任务全路径
'task': 'proj.task.tasks.add’,
# 周期时间
'schedule': 3.0,
# 指定任务所需的参数
'args': (2, 2)
},
}
return app

使用 -B 选择,表示启动 Celery Worker 服务进程的同时启动 Beat 模块。

NOTE 1:Beat 会把周期任务的时间表存储在 celerybeat-schedule 文件,在执行指令的当前目录生成。当 timezone 发生改变时,Beat 会根据 celerybeat-schedule 的内容自动调整计时方式。

NOTE 2:Beat 也支持 crontab 计时方式,十分简单易用。

e.g.

# filename: app_factory.py
from celery.schedules import crontab …
app.conf.beat_schedule = {
'periodic_task_add': {
'task': 'proj.task.tasks.add’,
# 每隔一分钟周期执行
'schedule': crontab(minute='*/1'),
'args': (2, 2)
},
}

Celery 的同步调用

Task.get 方法处理用于获取任务的执行结果之外,还能够用于实现 Celery 同步调用,以满足更多的应用场景。

e.g.

# filename: tasks.py

import time

from proj.celery import app

@app.task
def add(x, y, debug=False):
# Test sync invoke.
time.sleep(10)
for i in xrange(10):
print("Warting: %s s" % i)
if debug:
print("x: %s; y: %s" % (x, y))
return x + y

同步调用任务 add

>>> from proj.task.tasks import add
>>> add.delay(2, 2).get()
4

因为直接调用了 get 方法,所以进程会被阻塞知道任务 add 返回结果为止。

Celery 结果储存

如果你对任务执行的结果非常关注,那么你可以使用数据库(e.g. Redis)来充当 Backend,从而将执行结果持久化。

e.g.

# 执行一个任务,并取得任务 id
>>> from proj.task.tasks import add
>>> result = add.delay(2, 2)
>>> result.status
u’SUCCESS'
>>> result.get()
4
>>> result.id
'65cee5e0-5f4f-4d2b-b52f-6904e7f2b6ab’

进入 Redis 数据库,查看该任务对应的记录。

root@aju-test-env:~# redis-cli
127.0.0.1:6379> # 查看 Redis 所有的 keys
127.0.0.1:6379> keys *
1) "celery-task-meta-da3f6f3d-f977-4b39-a795-eaa89aca03ec"
2) "celery-task-meta-38437d5c-ebd8-442c-8605-435a48853085”
...
35) "celery-task-meta-65cee5e0-5f4f-4d2b-b52f-6904e7f2b6ab"
... # 通过任务 id,可以定位出任务在 Redis 中的 value
127.0.0.1:6379> GET 'celery-task-meta-65cee5e0-5f4f-4d2b-b52f-6904e7f2b6ab'
"{\"status\": \"SUCCESS\", \"traceback\": null, \"result\": 4, \"task_id\": \"65cee5e0-5f4f-4d2b-b52f-6904e7f2b6ab\", \"children\": []}"

Celery 的监控

Celery Flower 是 Celery 官方推荐的监控工具,借助于 Celery Events 接口,Flower 能够实时监控 Celery 的 Worker、Tasks、Broker、并发池等重要对象。

  • 安装 Flower
$ pip install flower
  • 开启 Celery Events
celery worker -A proj -E -l info

  • 开启 RabbitMQ Management Plugin
$ rabbitmq-plugins enable rabbitmq_management
$ service rabbitmq-server restart
  • 启动 Flower,并指定 broker URL
>nbsp;celery flower -l info --broker_api=http://guest:guest@<rabbitmq_server_ip>:15672/api/

  • 访问 Flower Web,浏览器打开 http://<flower_server_ip>:5555/dashboard

Celery 的调试

Celery 借助 telnet 可以支持远程 pdb 调试,非常方便。

# filename: tasks.py
from proj.celery import app
from celery.contrib import rdb @app.task
def add(x, y):
# 设置断点
rdb.set_trace()
return x + y

使用 celery.contrib 的 rdb 来设置断点,然后重启 Celery Worker 服务。

可以看见日志中提示了 telnet 远程连接的地址,所以打开另外一个终端,执行 telnet 指令即可完成连接,进入到非常熟悉的 pdb shell。

分布式任务队列 Celery —— 应用基础的更多相关文章

  1. 分布式任务队列 Celery —— Task对象

    转载至 JmilkFan_范桂飓:http://blog.csdn.net/jmilk  目录 目录 前文列表 前言 Task 的实例化 任务的名字 任务的绑定 任务的重试 任务的请求上下文 任务的继 ...

  2. 分布式任务队列 Celery —— 深入 Task

    目录 目录 前文列表 前言 Task 的实例化 任务的名字 任务的绑定 任务的重试 任务的请求上下文 任务的继承 前文列表 分布式任务队列 Celery 分布式任务队列 Celery -- 详解工作流 ...

  3. 分布式任务队列 Celery

    目录 目录 前言 简介 Celery 的应用场景 架构组成 Celery 应用基础 前言 分布式任务队列 Celery,Python 开发者必备技能,结合之前的 RabbitMQ 系列,深入梳理一下 ...

  4. [源码解析] 分布式任务队列 Celery 之启动 Consumer

    [源码解析] 分布式任务队列 Celery 之启动 Consumer 目录 [源码解析] 分布式任务队列 Celery 之启动 Consumer 0x00 摘要 0x01 综述 1.1 kombu.c ...

  5. [源码解析] 并行分布式任务队列 Celery 之 Task是什么

    [源码解析] 并行分布式任务队列 Celery 之 Task是什么 目录 [源码解析] 并行分布式任务队列 Celery 之 Task是什么 0x00 摘要 0x01 思考出发点 0x02 示例代码 ...

  6. [源码分析] 并行分布式任务队列 Celery 之 Timer & Heartbeat

    [源码分析] 并行分布式任务队列 Celery 之 Timer & Heartbeat 目录 [源码分析] 并行分布式任务队列 Celery 之 Timer & Heartbeat 0 ...

  7. 分布式任务队列 Celery —— 详解工作流

    目录 目录 前文列表 前言 任务签名 signature 偏函数 回调函数 Celery 工作流 group 任务组 chain 任务链 chord 复合任务 chunks 任务块 mapstarma ...

  8. [源码解析] 并行分布式任务队列 Celery 之 消费动态流程

    [源码解析] 并行分布式任务队列 Celery 之 消费动态流程 目录 [源码解析] 并行分布式任务队列 Celery 之 消费动态流程 0x00 摘要 0x01 来由 0x02 逻辑 in komb ...

  9. [源码解析] 并行分布式任务队列 Celery 之 多进程模型

    [源码解析] 并行分布式任务队列 Celery 之 多进程模型 目录 [源码解析] 并行分布式任务队列 Celery 之 多进程模型 0x00 摘要 0x01 Consumer 组件 Pool boo ...

随机推荐

  1. 初探 -5 JavaScript 语法

    JavaScript 是一个程序语言.语法规则定义了语言结构. JavaScript 语法 JavaScript 是一个脚本语言. 它是一个轻量级,但功能强大的编程语言. JavaScript 字面量 ...

  2. AIX中磁带设备的使用

    1.AIX中的磁带设备 在UNIX系统中,磁带一般具有如下共同属性. 磁带密度:指磁带使用时采用的低密度方式和高密度方式   回退操作:磁带一次写入操作完成后,是否立刻倒带,回退到磁带头部.   位置 ...

  3. win 与Linux 的hosts文件地址

    win(phpstudy):C:/Windows/System32/drivers/etc/hosts linux:  /etc/hosts

  4. C Make a Square Educational Codeforces Round 42 (Rated for Div. 2) (暴力枚举,字符串匹配)

    C. Make a Square time limit per test2 seconds memory limit per test256 megabytes inputstandard input ...

  5. Codeforces Round #575 (Div. 3) E. Connected Component on a Chessboard(思维,构造)

    E. Connected Component on a Chessboard time limit per test2 seconds memory limit per test256 megabyt ...

  6. Generative Adversarial Nets(GAN Tensorflow)

    Generative Adversarial Nets(简称GAN)是一种非常流行的神经网络. 它最初是由Ian Goodfellow等人在NIPS 2014论文中介绍的. 这篇论文引发了很多关于神经 ...

  7. SpringFramework中的BeanWrapper丶PropertyEditor

    BeanWrapper是org.springframework.beans包下的一个借口,对应的实现类为BeanWrapperImpl,提供对应的get/set方法,并且设置属性的可读性和可写性. p ...

  8. php:页面乱码的解决方法

    在 <?php header("Content-Type:text/html;charset=utf-8"); ////设置页面显示的文字编码 头部就写header函数处理成 ...

  9. python的flex服务端数据接口开发

    python的flex服务端数据接口开发 python 如果给flex提供服务端,需要提供一个网关和一个可供客户端(flex)调用的类.这方面我更加推荐用twisted来写这个网关,因为twisted ...

  10. 《SaltStack技术入门与实践》—— Peer

    Peer 本章节参考<SaltStack技术入门与实践>,感谢该书作者: 刘继伟.沈灿.赵舜东 Peer组件是SaltStack中Minion向Master发布任务的一个组件,使用Peer ...