computer(树形dp || 树的直径)
Computer
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 38417 Accepted Submission(s): 6957
Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.
1 1
2 1
3 1
1 1
2
3
4
4
/*************************************************************************
> File Name: computer.cpp
> Author: CruelKing
> Mail: 2016586625@qq.com
> Created Time: 2019年09月23日 星期一 14时08分02秒
我的思路:先求出直径的两个端点,接着求出所有顶点到两个端点的距离,取其中最大的即是答案.
第二种思路:一个顶点距离其他顶点的最远距离要么经过儿子结点,要么经过父亲结点,那么我们就都求出来取其大就可以了.
需要注意的是,如果说一个说父亲的最远距离经过儿子的最远距离的话,儿子需要换一条路次短路.
************************************************************************/ #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = + ;
struct Edge {
int to, cost, next;
} edge[maxn << ]; int n, ans; int head[maxn], tot;
//int dp[maxn];//某棵树子树的大小 # TODO:这是用树的直径的时候保存的状态 int dp[maxn][];//用dp[i][0]表示i的子树的最远距离,dp[i][1]表示i的子树的次远距离
//dp[i][2]表示i的祖先的最远距离,所以答案取max(dp[i][0], dp[i][2]) void init() {
memset(head, -, sizeof head);
tot = ;
} void addedge(int u, int v, int w) {
edge[tot].to = v; edge[tot].next = head[u]; edge[tot].cost = w; head[u] = tot ++;
edge[tot].to = u; edge[tot].next = head[v]; edge[tot].cost = w; head[v] = tot ++;
} /*
void dfs(int u, int pre) {
//TODO:求解树的直径
//本题没用到该函数
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].to;
if(v == pre) continue;
dfs(v, u);
if(ans < dp[u] + dp[v] + edge[i].cost) {
ans = dp[u] + dp[v] + edge[i].cost;
}
if(dp[v] + edge[i].cost > dp[u]) {
dp[u] = edge[i].cost + dp[v];
}
}
}
*/ /*
int d, M;
int A, B; int dist[maxn]; void dfs(int u, int pre, bool flag) {
//TODO:递归寻找树的直径的端点
if(d > M) {
M = d;
if(flag)
A = u;
else
B = u;
}
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].to;
if(pre == v) continue;
d += edge[i].cost;
if(!flag) dist[v] = d;
dfs(v, u, flag);
d -= edge[i].cost;
}
} void dfs1(int u, int pre) {
//TODO;寻找每个点距离两个端点的最大值
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].to;
if(pre == v) continue;
d += edge[i].cost;
dist[v] = max(d, dist[v]);
dfs1(v, u);
d -= edge[i].cost;
}
}
*/ void dfs(int u, int pre) {
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].to;
if(v == pre) continue;
dfs(v, u);
int temp = ;
if(dp[u][] <= dp[v][] + edge[i].cost) {
dp[u][] = dp[u][];
dp[u][] = dp[v][] + edge[i].cost;
} else if(dp[u][] < dp[v][] + edge[i].cost) {
dp[u][] = edge[i].cost + dp[v][];
}
}
// printf("%d %d %d\n", u, dp[u][0], dp[u][1]);
} void dfs1(int u, int pre) {
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].to;
if(v == pre) continue;
dp[v][] = max(dp[u][], dp[v][] + edge[i].cost == dp[u][] ? dp[u][] : dp[u][]) + edge[i].cost;
dfs1(v, u);
}
} int main() {
int v, w;
while(~scanf("%d", &n)) {
ans = ;
init();
memset(dp, , sizeof dp);
for(int i = ; i <= n; i ++) {
scanf("%d %d", &v, &w);
addedge(i, v, w);
}
/*TODO:利用树的直径求解本题
memset(dist, 0, sizeof dist);
d = M = 0;
dfs(1, -1, true);
M = 0;
dfs(A, -1, false);
// for(int i = 1; i <= n; i ++) {
// printf("%d\n", dist[i]);
// }
dfs1(B, -1);
for(int i = 1; i <= n; i ++) {
printf("%d\n", dist[i]);
}
*/
//TODO:利用树形dp求解本题
dfs(, -);
dfs1(, -);
for(int i = ; i <= n; i ++) {
printf("%d\n", max(dp[i][], dp[i][]));
}
}
return ;
}
computer(树形dp || 树的直径)的更多相关文章
- HDU 2196.Computer 树形dp 树的直径
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu-2169 Computer(树形dp+树的直径)
题目链接: Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- Computer(HDU2196+树形dp+树的直径)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2196 题目: 题意:有n台电脑,每台电脑连接其他电脑,第i行(包括第一行的n)连接u,长度为w,问你每 ...
- hdu 4607 树形dp 树的直径
题目大意:给你n个点,n-1条边,将图连成一棵生成树,问你从任意点为起点,走k(k<=n)个点,至少需要走多少距离(每条边的距离是1): 思路:树形dp求树的直径r: a:若k<=r+1 ...
- VIJOS1476旅游规划[树形DP 树的直径]
描述 W市的交通规划出现了重大问题,市政府下决心在全市的各大交通路口安排交通疏导员来疏导密集的车流.但由于人员不足,W市市长决定只在最需要安排人员的路口安放人员.具体说来,W市的交通网络十分简单,它包 ...
- POJ 3162.Walking Race 树形dp 树的直径
Walking Race Time Limit: 10000MS Memory Limit: 131072K Total Submissions: 4123 Accepted: 1029 Ca ...
- poj3162 树形dp|树的直径 + 双单调队列|线段树,好题啊
题解链接:https://blog.csdn.net/shiqi_614/article/details/8105149 用树形dp是超时的,, /* 先求出每个点可以跑的最长距离dp[i][0|1] ...
- 树形DP+树状数组 HDU 5877 Weak Pair
//树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
随机推荐
- [Linux系统] (1)常用操作(CentOS 7.x)
一.Linux系统配置 1.修改主机名 [/etc/hostname] vi /etc/hostname 在其中将旧名字修改为新主机名,保存,重启生效. 2.本地DNS映射 [/etc/hosts] ...
- QT:在其他窗口中显示QMainWindow
问题:在QFrame中嵌入QMainWindow窗口,却无法显示QMainWindow窗口,调用QMainWindow的show()却能出现单独弹出一个QMainWindow窗口. 解决: 由于QMa ...
- CSS的Animation&Transition&gradients属性
㈠Animation&Transition&gradients 代码示例 圆形,渐变颜色,旋转,当鼠标放在圆上,圆旋转变大 <!DOCTYPE html> <html ...
- Windows Server 快速生成免费SSL证书 (letsencrypt)
最近官网需求部署个SSL证书,一番操作后把借鉴的网站与实际过程记录下来 Let's Encrypt,官网是https://letsencrypt.org/,它是一个由各大公司赞助的公益组织: 有趋势有 ...
- CF 680D 堆塔
D. Bear and Tower of Cubes time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- nopCommerce4.10学习笔记——入门
1.下载 千万不要去GitHub上下载,千万不要去GitHub上下载,千万不要去GitHub上下载!!!,重要的事情说3遍,说多了都是泪,你懂的 下载网址:https://www.nopcommerc ...
- Linux命令-磁盘管理(二)
Linux命令-磁盘管理(二) Linux mmount命令 Linux mmount命令用于挂入MS-DOS文件系统. mmount为mtools工具指令,可根据[mount参数]中的设置,将磁盘内 ...
- USACO2018DEC GOLD
好简单啊.. T1裸分层图最短路. T2裸容斥. T3更水的DP. 代码 T1 #include <bits/stdc++.h> #define rin(i,a,b) for(regist ...
- spring的IOC——依赖注入的两种实现类型
一.构造器注入: 构造器注入,即通过构造函数完成依赖关系的设定.我们看一下spring的配置文件: <constructor-arg ref="userDao4Oracle" ...
- java 正则表达式:有丶东西
非常详细 原文地址:https://blog.csdn.net/jeffleo/article/details/52194977