合并石子(区间DP)
有N堆石子,现要将石子有序的合并成一堆,规定如下:每次只能移动相邻的2堆石子合并,合并花费为新合成的一堆石子的数量。求将这N堆石子合并成一堆的总花费最小。
区间DP思想:现在小区间进行DP得到最优解,然后再利用小区间的最优解组合并求大区间的最优解。(需要从小到大枚举所有可能的区间)
代码(没提交过,不过应该正确):
include
using namespace std;
const int maxn1=300;
int main()
{
int n,a[maxn1]={0},sum[maxn1]={0};
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i],sum[i]=a[i]+sum[i-1]; //前缀和
int dp[maxn1][maxn1]={0}; //dp[i][j]表示区间[i,n]的最小花费
for(int len=1;len<n;len++) //枚举所有可能的区间
{
for(int i=1;i<=n-len;i++)
{
dp[i][i+len]=INT_MAX;
for(int k=i;k<i+len;k++)
dp[i][i+len]=min(dp[i][i+len],dp[i][k]+dp[k+1][i+len]+sum[i+len]-sum[i-1]);
}
}
cout<<dp[1][n]<<endl;
return 0;
}
这样写很容易理解,但复杂度为O(n^3),基本最多只能计算250堆石子。
在网上看了一个平行四边形对区间DP的优化,复杂度基本可以维持在O(n^2),但是我却始终不理解其原理,不过大概按葫芦画瓢,写了一个(并注释了与之前O(n^3)的不同):
include
using namespace std;
const int maxn1=3000;
int main()
{
int n,a[maxn1]={0},sum[maxn1]={0},s[maxn1][maxn1];
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i],sum[i]=a[i]+sum[i-1];
for(int i=1;i<=n;i++) //多加
s[i][i]=i; //多加 (记录区间最优解的位置)
int dp[maxn1][maxn1]={0};
for(int len=1;len<n;len++)
{
for(int i=1;i<=n-len;i++)
{
dp[i][i+len]=INT_MAX;
for(int k=s[i-1][i+len];k<=s[i+1][i+len];k++) //改变
if(dp[i][k]+dp[k+1][i+len]+sum[i+len]-sum[i-1]<dp[i][i+len]) //改变
{
dp[i][i+len]=dp[i][k]+dp[k+1][i+len]+sum[i+len]-sum[i-1]; //改变
s[i][i+len]=k; //改变
}
}
}
cout<<dp[1][n]<<endl;
return 0;
}
合并石子(区间DP)的更多相关文章
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
- 直线石子合并(区间DP)
石子合并 时间限制:1000 ms | 内存限制:65535 KB 描述有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费 ...
- CH5301 石子合并【区间dp】
5301 石子合并 0x50「动态规划」例题 描述 设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300).每堆沙子有一定的数量,可以用一个整数来描述,现在要将这N堆沙子合并成为一堆, ...
- zjnu 1181 石子合并(区间DP)
Description 在操场上沿一直线排列着 n堆石子. 现要将石子有次序地合并成一堆.规定每次仅仅能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.同意在第一次合并前对调一 ...
- nyoj 737 石子合并(区间DP)
737-石子合并(一) 内存限制:64MB 时间限制:1000ms 特判: No通过数:28 提交数:35 难度:3 题目描述: 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为 ...
- 石子合并2——区间DP【洛谷P1880题解】
[区间dp让人头痛……还是要多写些题目练手,抽空写篇博客总结一下] 这题区间dp入门题,理解区间dp或者练手都很妙 ——题目链接—— (或者直接看下面) 题面 在一个圆形操场的四周摆放N堆石子,现要将 ...
- 石子合并问题 /// 区间DP oj2025
Description 在一个圆形操场的四周摆放着n堆石子.现要将石子有次序地合并成一堆. 规定每次只能选相邻的两堆石子合并成新的一堆,并将新得的这堆石子数记为该次合并的得分. 试设计一个算法,计算出 ...
- 石子合并 (区间DP)
一.试题在一个园形操场的四周摆放N堆石子(N≤100),现要将石子有次序地合并成一堆.规定每次仅仅能选相邻的两堆合并成新的一堆,并将新的一堆的石子数.记为该次合并的得分.编一程序.由文件读入堆数N及每 ...
- 合并傻子//区间dp
P1062 合并傻子 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 从前有一堆傻子,钟某人要合并他们~但是,合并傻子是要掉RP的...... 描述 在一个园 ...
- nyoj 737 石子合并 经典区间 dp
石子合并(一) 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆 ...
随机推荐
- [hdu6558][CCPC2018吉林D题]The Moon(期望dp)
题目链接 当时年少不懂期望$dp$,时隔一年看到这道题感觉好容易.... 定义状态$dp[i]$表示当前的$q$值为$i$时的期望,则当$q$值为$100$时$dp[100]=100/q$,这时后发现 ...
- [Bzoj2004][Hnoi2010]Bus 公交线路(状压dp&&矩阵加速)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2004 看了很多大佬的博客才理解了这道题,菜到安详QAQ 在不考虑优化的情况下,先推$dp ...
- 【题解】Shortest Cycle
原题链接:CF1205B 题目大意 给定\(n\)个整数\(a_1,a_2,a_3, \dots ,a_n\),若\(i \neq j\)且\(a_i \land a_j \neq 0\),则 ...
- java 标识接口的作用
标识接口的作用 标识接口是没有任何方法和属性的接口.标识接口不对实现它的类有任何语义上的要求,它仅仅表明实现它的类属于一个特定的类型. 标接口在Java语言中有一些很著名的应用,例如我们常用的Arra ...
- Java使用POI读取和写入Excel指南(转)
做项目时经常有通过程序读取Excel数据,或是创建新的Excel并写入数据的需求: 网上很多经验教程里使用的POI版本都比较老了,一些API在新版里已经废弃,这里基于最新的Apache POI 4.0 ...
- wxpython中复选框的基本使用源码实例
#coding=utf-8 import wx class MyFrame(wx.Frame): def __init__(self): wx.Frame.__init__(self,None,-1, ...
- Python的五大数据类型的作用、定义方式、使用方法
一.简述Python的五大数据类型的作用.定义方式.使用方法: 1. 数字类型int: 1.整形 作用:可以表示人的年龄,身份证号码,身高和体重等 定义方式: weight = 130 print( ...
- 记录面试一位三年经验Web前端开发者的过程
今天是2019年6月5日,后天就是端午节了,提前祝端午节快乐! 好了,开始这次面试过程的正题部分. 当我从人事手中接下这份三年哥(暂拟名称)的简历的时候,看到三年工作经验,心想 这应该是个大佬了 挺厉 ...
- 关于webpack高版本向低版本切换 如何切换?
卸载:npm uninstall webpack -g 重新安装:npm install webpack@3.7.1 -g 直接安装指定版本就行了,如安装 2.4.1 版:cnpm install w ...
- 零点.Net Core 接触
一.Program.cs类与Startup类 1.一切从Main开始,Main方法包含了是整个应用程序的入口 ASP.NET Core应用程序可以配置和启动主机(Host). 主机负责应用程序启动和生 ...