tensorflow学习笔记六----------神经网络
使用mnist数据集进行神经网络的构建
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('data/', one_hot=True)
这个神经网络共有三层。输入层有n个1*784的矩阵,第一层有256个神经元,第二层有128个神经元,输出层是一个十分类的结果。对w1、b1、w2、b2以及输出层的参数进行随机初始化
# NETWORK TOPOLOGIES
n_input = 784
n_hidden_1 = 256
n_hidden_2 = 128
n_classes = 10 # INPUTS AND OUTPUTS
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes]) # NETWORK PARAMETERS
stddev = 0.1
weights = {
'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=stddev)),
'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=stddev)),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes], stddev=stddev))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
print ("NETWORK READY")
开始进行前向传播
def multilayer_perceptron(_X, _weights, _biases):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(_X, _weights['w1']), _biases['b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, _weights['w2']), _biases['b2']))
return (tf.matmul(layer_2, _weights['out']) + _biases['out'])
用前向传播函数算出预测值;算出损失值(此处使用交叉熵);构造梯度下降最优构造器;算出精度;
# PREDICTION
pred = multilayer_perceptron(x, weights, biases) # LOSS AND OPTIMIZER
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optm = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(cost)
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accr = tf.reduce_mean(tf.cast(corr, "float")) # INITIALIZER
init = tf.global_variables_initializer()
print ("FUNCTIONS READY")
定义迭代次数;使用以上定义好的神经网络函数
training_epochs = 20
batch_size = 100
display_step = 4
# LAUNCH THE GRAPH
sess = tf.Session()
sess.run(init)
# OPTIMIZE
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# ITERATION
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
feeds = {x: batch_xs, y: batch_ys}
sess.run(optm, feed_dict=feeds)
avg_cost += sess.run(cost, feed_dict=feeds)
avg_cost = avg_cost / total_batch
# DISPLAY
if (epoch+1) % display_step == 0:
print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
feeds = {x: batch_xs, y: batch_ys}
train_acc = sess.run(accr, feed_dict=feeds)
print ("TRAIN ACCURACY: %.3f" % (train_acc))
feeds = {x: mnist.test.images, y: mnist.test.labels}
test_acc = sess.run(accr, feed_dict=feeds)
print ("TEST ACCURACY: %.3f" % (test_acc))
print ("OPTIMIZATION FINISHED")
tensorflow学习笔记六----------神经网络的更多相关文章
- TensorFlow学习笔记——深层神经网络的整理
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- TensorFlow学习笔记——LeNet-5(训练自己的数据集)
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4* ...
- tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计 ...
- tensorflow学习笔记——自编码器及多层感知器
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...
- tensorflow学习笔记——VGGNet
2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC201 ...
随机推荐
- c# 操作mysql数据库的时候会出现 插入中文汉字变成问号?
场景: 在mysql ce里面执行时没有问题的. c#操作会出现问号. 原因是: 链接字符串的时候 要设置Charset=utf8; 不然就会按默认的服务器设置编码,通常会出问题. 检查: 1.创建 ...
- CSP-S2019游记&拆塔记
不是拆广州塔 Day -inf 四套NOI模拟降智 Day0 拆了一发新新 本来想复习小圆脸结果拆了3h最后还没带任意门 没有帘子可还行 第一天由于没发现被子可以抽出来就没睡好 Day1 8:30开考 ...
- form表单细节
一.表单 表单<form> 标签用于为用户输入创建 HTML 表单 表单能够包含 input 元素,比如文本字段.复选框.单选框.提交按钮等等. 表单还可以包含 menus.textare ...
- JPA学习(一、JPA_Hello World)
框架学习之JPA(一) JPA是Java Persistence API的简称,中文名Java持久层API,是JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的实体对象持久化到数据库中 ...
- php+html5实现无刷新上传,大文件分片上传,断点续传
核心原理: 该项目核心就是文件分块上传.前后端要高度配合,需要双方约定好一些数据,才能完成大文件分块,我们在项目中要重点解决的以下问题. * 如何分片: * 如何合成一个文件: * 中断了从哪个分片开 ...
- CentOS7/RHEL7 pacemaker+corosync高可用集群搭建
TOC \o "1-3" \h \z \u 一.集群信息... PAGEREF _Toc502099174 \h 4 08D0C9EA79F9BACE118C8200AA004B ...
- Python爬虫黑科技(经验)
"作为一名爬虫工程师,你最需要关注的,是数据的来源" 原文:https://www.jb51.net/article/90114.htm 霍夫曼编码压缩算法 1.最基本的抓站 ...
- Win7,win10(部分机型) 安装appscan9.0.3.10(可升级)实操流程
Win10部分机型不能很好的兼容appscan,建议使用者用win7系统安装appscan 写于:2018.12.2 IBM Security AppScan Standard 可通过自动执行应用安全 ...
- 从Java中的length和length()开始
1.在没有IDE自动补齐的情况下,怎样得到数组的长度?怎样得到字符串的长度? int[] arr = new int[3]; System.out.println(arr.length);//leng ...
- Jupiter Code Review Reference -- Jupiter代码审查工具使用参考
Jupiter Code Review Reference -- Jupiter代码审查工具使用参考 (修改版) 原创 2010年07月06日 10:43:00 标签: 审查 / reference ...