zoj 3777 Problem Arrangement(壮压+背包)
Problem Arrangement
Time Limit: 2 Seconds
Memory Limit: 65536 KB
The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward is going to arrange the order of the problems. As we know, the arrangement will have a great effect on the result of the contest. For example, it will take
more time to finish the first problem if the easiest problem hides in the middle of the problem list.
There are N problems in the contest. Certainly, it's not interesting if the problems are sorted in the order of increasing difficulty. Edward decides to arrange the problems in a different way. After a careful study, he found out that the i-th
problem placed in the j-th position will add Pij points of "interesting value" to the contest.
Edward wrote a program which can generate a random permutation of the problems. If the total interesting value of a permutation is larger than or equal to
M points, the permutation is acceptable. Edward wants to know the expected times of generation needed to obtain the first acceptable permutation.
Input
There are multiple test cases. The first line of input contains an integer
T indicating the number of test cases. For each test case:
The first line contains two integers N (1 <= N <= 12) and
M (1 <= M <= 500).
The next N lines, each line contains N integers. The j-th integer in the i-th line is
Pij (0 <= Pij <= 100).
Output
For each test case, output the expected times in the form of irreducible fraction. An irreducible fraction is a fraction in which the numerator and denominator are positive integers and have no other common divisors than 1. If it is impossible to get an
acceptable permutation, output "No solution" instead.
Sample Input
2
3 10
2 4 1
3 2 2
4 5 3
2 6
1 3
2 4
Sample Output
3/1
No solution
Author: DAI, Longao
Source: The 11th Zhejiang Provincial Collegiate Programming Contest
题意:
告诉你有n(1<=n<=12)道ACM题目。每道题目放在不同的位置都有一个happy值。
以n*n矩阵给出。
第i行第j列的值表示第i个为题放在第j个位置的happy值p[i][j](0<=p[i][j]<=100)。如今有个人写了个随机算法。
问你他要得到一个happy值不小于m(1<=m<=500)的排列。
问他生成次数的期望。
思路:
假设知道他一次随机生成的序列为满足条件的序列的概率p。那么期望E=1/p了。而p又为满足条件的方案数/总发难数。最简单粗暴的方法就是dfs暴力每种选择然后统计满足条件的方案数。可是dfs时间复杂度为O(n!)。明显超时的节奏。
仅仅有换种方法。
受到曾经做过一道题的启示。能够用背包算出生成的序列每种happy值的方案数。
那么最后统计下即可了。可是题目中限制每行每列仅仅能选择一个。
所以就想到了用壮压来记录已经选择的列。n的范围正好。那么思路大概就清晰了。
dp[i][j]表示。
眼下列的选择状态为i.happy值为j的方案数。i中二进制位中k位为1表示第k列已经选择。须要注意的是这里不用枚举行数。由于i中1的个数就能够代表行数了。
递推时仅仅需依据1的个数就可确定了。
这样就不会出现某一行反复选多次的情况。比赛时忽略这一点导致错误的觉得这个算法要超时。
。。。真是逗。
具体见代码:
#include<bits/stdc++.h>
using namespace std;
int dp[1<<12][510],p[15][15],base[15],one[1<<12],ml[12];
void init()//预处理
{
int i,t,ct;
base[0]=ml[0]=1;//base[i]表示2^i.ml[i]表示i!。one[i]比奥斯i中1的个数。
for(i=1;i<=12;i++)
base[i]=base[i-1]<<1,ml[i]=ml[i-1]*i;
for(i=0;i<=base[12];i++)
{
t=i,ct=0;
while(t)
ct+=t&1,t>>=1;
one[i]=ct;
}
}
int gcd(int x,int y)//求x,y的最大公约数
{
int tp;
while(tp=x%y)
x=y,y=tp;
return y;
}
int main()
{
int i,j,k,n,m,t,tp,ns,ans;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
scanf("%d",&p[i][j]);
m--,ans=0;
memset(dp,0,sizeof dp);
dp[0][0]=1;
for(i=0;i<base[n];i++)//枚举上一状态
{
tp=one[i];//注意是从0開始算的。所以tp=one[i]+1-1.
for(j=0;j<n;j++)//枚举下个状态tp行选第j列。
{
if(base[j]&i)//检查j列是否占用。
continue;
for(k=m,ns=i|base[j];k>=p[tp][j];k--)//01背包。
if(dp[i][k-p[tp][j]])
dp[ns][k]+=dp[i][k-p[tp][j]];
}
// printf("bit %o\n",i);
// for(k=0;k<=m;k++)
// printf("%d %d\n",k,dp[i][k]);
}
for(i=0,tp=base[n]-1;i<=m;i++)
ans+=dp[tp][i];//计算不满足的个数。
ans=ml[n]-ans,tp=gcd(ans,ml[n]);//总个数减不满足的个数即为满足个数。
if(!ans)
printf("No solution\n");
else
printf("%d/%d\n",ml[n]/tp,ans/tp);
}
return 0;
}
zoj 3777 Problem Arrangement(壮压+背包)的更多相关文章
- ZOJ 3777 - Problem Arrangement - [状压DP][第11届浙江省赛B题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 Time Limit: 2 Seconds Me ...
- ACM学习历程—ZOJ 3777 Problem Arrangement(递推 && 状压)
Description The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem sett ...
- zoj 3777 Problem Arrangement
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5264 题意:给出n道题目以及每一道题目不同时间做的兴趣值,让你求出所有做题顺序 ...
- 2014 Super Training #4 B Problem Arrangement --状压DP
原题:ZOJ 3777 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:给每个题目安排在每个位置的value ...
- ZOJ 3777 B - Problem Arrangement 状压DP
LINK:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:有N(\( N <= 12 \))道题,排顺序 ...
- zoj3777 Problem Arrangement(状压dp,思路赞)
The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward i ...
- Problem Arrangement ZOJ - 3777(状压dp + 期望)
ZOJ - 3777 就是一个入门状压dp期望 dp[i][j] 当前状态为i,分数为j时的情况数然后看代码 有注释 #include <iostream> #include <cs ...
- B - Problem Arrangement ZOJ - 3777
Problem Arrangement ZOJ - 3777 题目大意:有n道题,第i道题第j个做可以获得Pij的兴趣值,问至少得到m兴趣值的数学期望是多少,如果没有的话就输出No solution. ...
- ZOJ 3777-Problem Arrangement(状压DP)
B - Problem Arrangement Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & %l ...
随机推荐
- eclipse 设置注释模板
window->preference->java->code styple->code template->Comments Types /** * @author $ ...
- Python内置函数(19)-slice
官方文档 class slice(stop) class slice(start, stop[, step]) Return a slice object representing the set o ...
- Checklist: 2019 05.01 ~ 06.30
Golang Lessons learned porting 50k loc from Java to Go Five things that make Go fast Simple techniqu ...
- 免费资源(CDN,顶级域名)汇集
CloudFlare:免费CDN,需要将域名指向到cloudflare服务器.付费的可以使用二级域名 https://www.cloudflare.com/ Freenom:freenom会提供免费提 ...
- 2019西北工业大学程序设计创新实践基地春季选拔赛 D(卢卡斯定理)
链接:https://ac.nowcoder.com/acm/contest/553/D来源:牛客网 Chino with Equation 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C ...
- vue-ivew input 框 回车搜索功能
1. 添加事件 <FormItem prop="> <Input type="text" v-model="formInline.produc ...
- javascript实现下拉菜单的显示与隐藏
demo.html <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...
- bzoj2004 [Hnoi2010]Bus 公交线路 矩阵快速幂+状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2004 题解 如果 \(N\) 没有那么大,考虑把每一位分配给每一辆车. 假设已经分配到了第 \ ...
- Python 分段利润提成
题目:企业发放的奖金根据利润提成.利润(I)低于或等于10万元时,奖金可提10%:利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可提成7.5%:20万到40万之 ...
- springboot redis操作
redis五大类型用法 Redis五大类型:字符串(String).哈希/散列/字典(Hash).列表(List).集合(Set).有序集合(sorted set)五种Controller:@Reso ...