传送门

解题思路

  首先发现可以把相邻的黑白棋子之间的距离看成一堆棋子,那么这个就可以抽象成\(Nim\)游戏每次可以取\(d\)堆这个游戏,而这个游戏的\(SG\)值为\(x\%(d+1)\),那么题目其实就是求所有石子的异或和\(\%d=0\)的方案数。可以设\(f[i][j]\)表示二进制下前\(i\)位\(\%d\)都为\(0\),一共用了\(j\)个石子,转移时可以枚举当前这一位\(/d\)为多少,然后再乘组合数更新答案,最后用总数\(-\)不合法方案即可。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std;
const int N=10005;
const int MOD=1e9+7; int n,k,d,f[20][N],C[10005][205],ans,tot;
inline int min(int x,int y) {return x<y?x:y;} inline void prework(){
C[0][0]=1; int Min;
for(int i=1;i<=n;i++){
C[i][0]=1; Min=min(i,k);
for(int j=1;j<=Min;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
} inline int calc(int x,int y){
if(y>x-y) y=x-y;
return C[x][y];
} int main(){
scanf("%d%d%d",&n,&k,&d);
prework(); f[0][0]=1;
for(int i=0;i<15;i++)
for(int j=0;j<=n-k;j++)
for(int l=0;l*(d+1)<=k/2 && j+l*(d+1)*(1<<i)<=n-k;l++)
(f[i+1][j+l*(d+1)*(1<<i)]+=1ll*f[i][j]*calc(k/2,l*(d+1))%MOD)%=MOD;
for(int i=0;i<=n-k;i++) (ans+=1ll*f[15][i]*calc(n-i-k/2,k/2)%MOD)%=MOD;
tot=calc(n,k); ans=(tot-ans+MOD)%MOD; printf("%d\n",ans);
return 0;
}

BZOJ 2281: [Sdoi2011]黑白棋(dp+博弈论)的更多相关文章

  1. Bzoj 2281 [Sdoi2011]黑白棋 题解

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 592  Solved: 362[Submit][Status][ ...

  2. BZOJ 2281: [Sdoi2011]黑白棋 (Nim游戏+dp计数)

    题意 这题目有一点问题,应该是在n个格子里有k个棋子,k是偶数.从左到右一白一黑间隔出现.有两个人不妨叫做小白和小黑.两个人轮流操作,每个人可以选 1~d 枚自己颜色的棋子,如果是白色则只能向右移动, ...

  3. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  4. bzoj 2281: [Sdoi2011]黑白棋

    再次,,,,,虚(一开始看错题了,看成一次移动一个棋子,能移动1-d个格子...这样的话有没有大神会做??本蒟蒻就教) 额,,直接%%%%把...http://hzwer.com/5760.html ...

  5. 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)

    [BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...

  6. [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 626  Solved: 390[Submit][Status][ ...

  7. P2490 [SDOI2011]黑白棋

    P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...

  8. 【BZOJ2281】【博弈论+DP】 [Sdoi2011]黑白棋

    Description 黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是 ...

  9. [SDOI2011]黑白棋

    Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...

随机推荐

  1. 用 Flask 来写个轻博客 (37) — 在 Github 上为第一阶段的版本打 Tag

    Blog 项目源码:https://github.com/JmilkFan/JmilkFan-s-Blog 目录 目录 前文列表 第一阶段结语 打 Tag 前文列表 用 Flask 来写个轻博客 (1 ...

  2. 《图解设计模式》读书笔记3-3 Builder模式

    目录 示例程序 类图 代码 角色 思路拓展 谁知道什么 构造和实现分离 和Template Method模式的区别和联系? Builder模式即建造者模式,利用这个模式可以组装具有复杂结构的实例. 示 ...

  3. Selenium WebDriver 常用API

    public class Demo1 { WebDriver driver; @BeforeMethod public void visit(){ //webdriver对象的声明 System.se ...

  4. Drone - 安装,搭配 GitLab 下的配置和使用

    参考资料: Drone 官网地址:https://drone.io Drone 的 GitHub 地址:https://github.com/drone/drone 简介:https://imnerd ...

  5. Vagrant 手册之 Provisioning - Shell 配置程序

    原文地址 Provisioner 命令:"shell" 示例: node.vm.provision "shell" do |s| s.inline = < ...

  6. Jenkins 官网文档翻译汇总

    Jenkins 官网地址 Jenkins 官网文档地址 用户手册 安装 Jenkins 使用 Jenkins 使用凭证 Pipeline 流水线 开始使用 Pipeline 使用 Jenkinsfil ...

  7. vue-slot的使用

    父组件在子组件内套的内容,是不显示的:vue有一套内容分发的的API,<slot>作为内容分发的出口,假如父组件需要在子组件内放一些DOM,那么这些DOM是显示.不显示.在哪个地方显示.如 ...

  8. Support Vector Machine(3):Soft Margin 平衡之美

    很多材料上面讲道“引入Soft Margin的原因是因为数据线性不可分”,个人认为有些错误,其实再难以被分解的数据,如果我们用很复杂的弯弯绕曲线去做,还是可以被分解,并且映射到高维空间后认为其线性可分 ...

  9. Convolutional Neural Networks(1): Architecture

    Concolutional Neural Networks(CNN)同样使用三层结构,但结构上同Feedforward Neural Network有很大不同,其结构如下图: Input layer: ...

  10. mysql练习题目试水50题,附建库sql代码

    如果你没试过水的话,那一题一题地每一题都敲一遍吧.不管它们对你看来有多么简单.  建库代码 部分题目答案在末尾,可用ctrl f  搜索题号. 作业练习——学生-选课 表结构 学生表: Student ...