BZOJ 2281: [Sdoi2011]黑白棋(dp+博弈论)
解题思路
首先发现可以把相邻的黑白棋子之间的距离看成一堆棋子,那么这个就可以抽象成\(Nim\)游戏每次可以取\(d\)堆这个游戏,而这个游戏的\(SG\)值为\(x\%(d+1)\),那么题目其实就是求所有石子的异或和\(\%d=0\)的方案数。可以设\(f[i][j]\)表示二进制下前\(i\)位\(\%d\)都为\(0\),一共用了\(j\)个石子,转移时可以枚举当前这一位\(/d\)为多少,然后再乘组合数更新答案,最后用总数\(-\)不合法方案即可。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=10005;
const int MOD=1e9+7;
int n,k,d,f[20][N],C[10005][205],ans,tot;
inline int min(int x,int y) {return x<y?x:y;}
inline void prework(){
C[0][0]=1; int Min;
for(int i=1;i<=n;i++){
C[i][0]=1; Min=min(i,k);
for(int j=1;j<=Min;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
}
inline int calc(int x,int y){
if(y>x-y) y=x-y;
return C[x][y];
}
int main(){
scanf("%d%d%d",&n,&k,&d);
prework(); f[0][0]=1;
for(int i=0;i<15;i++)
for(int j=0;j<=n-k;j++)
for(int l=0;l*(d+1)<=k/2 && j+l*(d+1)*(1<<i)<=n-k;l++)
(f[i+1][j+l*(d+1)*(1<<i)]+=1ll*f[i][j]*calc(k/2,l*(d+1))%MOD)%=MOD;
for(int i=0;i<=n-k;i++) (ans+=1ll*f[15][i]*calc(n-i-k/2,k/2)%MOD)%=MOD;
tot=calc(n,k); ans=(tot-ans+MOD)%MOD; printf("%d\n",ans);
return 0;
}
BZOJ 2281: [Sdoi2011]黑白棋(dp+博弈论)的更多相关文章
- Bzoj 2281 [Sdoi2011]黑白棋 题解
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 592 Solved: 362[Submit][Status][ ...
- BZOJ 2281: [Sdoi2011]黑白棋 (Nim游戏+dp计数)
题意 这题目有一点问题,应该是在n个格子里有k个棋子,k是偶数.从左到右一白一黑间隔出现.有两个人不妨叫做小白和小黑.两个人轮流操作,每个人可以选 1~d 枚自己颜色的棋子,如果是白色则只能向右移动, ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- bzoj 2281: [Sdoi2011]黑白棋
再次,,,,,虚(一开始看错题了,看成一次移动一个棋子,能移动1-d个格子...这样的话有没有大神会做??本蒟蒻就教) 额,,直接%%%%把...http://hzwer.com/5760.html ...
- 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)
[BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...
- [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 626 Solved: 390[Submit][Status][ ...
- P2490 [SDOI2011]黑白棋
P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...
- 【BZOJ2281】【博弈论+DP】 [Sdoi2011]黑白棋
Description 黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是 ...
- [SDOI2011]黑白棋
Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...
随机推荐
- mysql 开放远程连接权限连不上
1.my.cof配置了:bind-address=addr 或 skip-networking,需要注释 2.防火墙限制3306端口: iptables -L -n --line-numbers ...
- 重写hashCode方法,导致内存泄漏
package com.nchu.learn.base.reflect; import org.junit.Test; import java.util.Collection; import java ...
- Windows7下MongoDB的下载、安装与配置详解
一.Windows7下的运行库问题 虽然这个问题属于个例,但我觉得也有必要拿出来说说,保不齐你新装的系统就存在运行库没更新或者没装全的问题.出现这样的问题其实挺恼人的,具体表现就是系统经常会弹出警示框 ...
- mysqladmin - 管理 MySQL 服务器、获取运行状态
官方文档 mysqladmin 是管理 MySQL 服务器的客户端,可以用来检测服务器的配置和当前状态.创建和删除数据库等. 1. mysqladmin 的调用语法 shell> mysqlad ...
- 【SD系列】SAP 跨年时更改销售凭证号码段
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[SD系列]SAP 跨年时更改销售凭证号码段 ...
- 舔狗【2019河北省大学生程序设计竞赛 J题】
题目描述 > “舔狗舔狗,> 舔到最后,> 一无所有.” 有 n 只舔狗,每只舔狗的心中都有自己朝思暮想的一位. 每个人虽然受到了一万次拒绝,还毅然第一万零一次鼓起勇气. 作为一个不 ...
- 面向JVM的应用程序的项目结构
对于Maven所用的项目结构,称为Maven标准的目录结构,不包含git 一.一个典型的源代码结构: / [project-name] README.txt LICENSE.txt pom.xml / ...
- Emacs中的前进后退jump-tree
Emacs中的前进后退jump-tree */--> code {color: #FF0000} pre.src {background-color: #002b36; color: #8394 ...
- Link-Cut-Tree学习(LCT)
Link-Cut-Tree学习(LCT) 真不敢想象我居然学会LCT了,但是我仍然不想写一篇博客来梳理 我怕一梳理自己又不懂了 但是作为一名朴实沉毅的cjoier,我决定小小的梳理一下,并不打算很精致 ...
- [JSOI2007]建筑抢修(贪心+后悔)
[JSOI2007]建筑抢修(贪心+后悔) 洛谷题目传送门 吐槽 这是一道经典的贪心后悔的题目 做过贪心加后悔的题目的应该一眼可以看出来 解题思路 首先按倒塌时间T2排序,再从1枚举到n,能修就修,发 ...