BZOJ 2281: [Sdoi2011]黑白棋(dp+博弈论)
解题思路
首先发现可以把相邻的黑白棋子之间的距离看成一堆棋子,那么这个就可以抽象成\(Nim\)游戏每次可以取\(d\)堆这个游戏,而这个游戏的\(SG\)值为\(x\%(d+1)\),那么题目其实就是求所有石子的异或和\(\%d=0\)的方案数。可以设\(f[i][j]\)表示二进制下前\(i\)位\(\%d\)都为\(0\),一共用了\(j\)个石子,转移时可以枚举当前这一位\(/d\)为多少,然后再乘组合数更新答案,最后用总数\(-\)不合法方案即可。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=10005;
const int MOD=1e9+7;
int n,k,d,f[20][N],C[10005][205],ans,tot;
inline int min(int x,int y) {return x<y?x:y;}
inline void prework(){
C[0][0]=1; int Min;
for(int i=1;i<=n;i++){
C[i][0]=1; Min=min(i,k);
for(int j=1;j<=Min;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
}
inline int calc(int x,int y){
if(y>x-y) y=x-y;
return C[x][y];
}
int main(){
scanf("%d%d%d",&n,&k,&d);
prework(); f[0][0]=1;
for(int i=0;i<15;i++)
for(int j=0;j<=n-k;j++)
for(int l=0;l*(d+1)<=k/2 && j+l*(d+1)*(1<<i)<=n-k;l++)
(f[i+1][j+l*(d+1)*(1<<i)]+=1ll*f[i][j]*calc(k/2,l*(d+1))%MOD)%=MOD;
for(int i=0;i<=n-k;i++) (ans+=1ll*f[15][i]*calc(n-i-k/2,k/2)%MOD)%=MOD;
tot=calc(n,k); ans=(tot-ans+MOD)%MOD; printf("%d\n",ans);
return 0;
}
BZOJ 2281: [Sdoi2011]黑白棋(dp+博弈论)的更多相关文章
- Bzoj 2281 [Sdoi2011]黑白棋 题解
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 592 Solved: 362[Submit][Status][ ...
- BZOJ 2281: [Sdoi2011]黑白棋 (Nim游戏+dp计数)
题意 这题目有一点问题,应该是在n个格子里有k个棋子,k是偶数.从左到右一白一黑间隔出现.有两个人不妨叫做小白和小黑.两个人轮流操作,每个人可以选 1~d 枚自己颜色的棋子,如果是白色则只能向右移动, ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- bzoj 2281: [Sdoi2011]黑白棋
再次,,,,,虚(一开始看错题了,看成一次移动一个棋子,能移动1-d个格子...这样的话有没有大神会做??本蒟蒻就教) 额,,直接%%%%把...http://hzwer.com/5760.html ...
- 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)
[BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...
- [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 626 Solved: 390[Submit][Status][ ...
- P2490 [SDOI2011]黑白棋
P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...
- 【BZOJ2281】【博弈论+DP】 [Sdoi2011]黑白棋
Description 黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是 ...
- [SDOI2011]黑白棋
Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...
随机推荐
- 004-URL编码转换函数:escape()、encodeURI()、encodeURIComponent()
一.概述 函数出现时间: escape() javascript 1.0 ...
- 用BP人工神经网络识别手写数字
http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb5 ...
- 解读:nginx的一个神秘配置worker_cpu_affinity
今天在查看nginx的相关知识的时候发现了一个nginx之前不认识的配置:worker_cpu_affinity. nginx默认是没有开启利用多核cpu的配置的.需要通过增加worker_cpu_a ...
- SEC2- - mysql 的介绍
一.mysql的背景 前身属于瑞典的一家公司,mysql AB 08年被sun公司收购 09年被oracle公司收购 二.mysql的优点 1. 开源免费成本低 2. 性能高,移植性好 3. 体积 ...
- jQuery基础--插件
1. 插件 1.1. 常用插件 插件:jquery不可能包含所有的功能,我们可以通过插件扩展jquery的功能. jQuery有着丰富的插件,使用这些插件能给jQuery提供一些额外的功能. 1.1. ...
- 开发中遇到的相关linux问题
一:java.sql.SQLException: Access denied for user 'root'@'10.150.152.200' (using password: YES) 1:用户名后 ...
- Java并发编程:Concurrent锁机制解析
Java并发编程:Concurrent锁机制解析 */--> code {color: #FF0000} pre.src {background-color: #002b36; color: # ...
- php提交表单时如何保留多个空格及换行的文本样式
需求是:用户提交表单时屏蔽敏感词的功能.其中敏感词来自服务器端同一路径下的ciku.txt,敏感词通过"|"连接,例如"g|c|a",提交表单时替换敏感词,更重 ...
- iview table列中根据不同的状态显示不同的颜色,显示图片
使用reder可以实现 1.显示不同状态 2.显示图片
- Django 项目环境搭建
环境 mkvirtualenv -p python3.6 mytest # 创建虚拟环境 workon mytest # 进入虚拟环境 # 按照基础环境依赖 pip install django==1 ...