A

/*Huyyt*/
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int dir[][] = {{, }, {, }, {, -}, { -, }, {, }, {, -}, { -, -}, { -, }};
const int mod = 1e9 + , gakki = + + + + 1e9;
const int MAXN = 2e5 + , MAXM = 2e5 + , N = 2e5 + ;
const int MAXQ = ;
/*int to[MAXM << 1], nxt[MAXM << 1], Head[MAXN], tot = 1;
inline void addedge(int u, int v)
{
to[++tot] = v;
nxt[tot] = Head[u];
Head[u] = tot;
}*/
inline void read(int &v)
{
v = ;
char c = ;
int p = ;
while (c < '' || c > '')
{
if (c == '-')
{
p = -;
}
c = getchar();
}
while (c >= '' && c <= '')
{
v = (v << ) + (v << ) + c - '';
c = getchar();
}
v *= p;
}
map<int, int> mp;
int main()
{
int n;
read(n);
int ans = ;
mp[] = ;
for (int i = ; i <= n; i++)
{
int now;
read(now);
if (!mp[now])
{
mp[now] = ;
ans++;
}
}
cout << ans << endl;
return ;
}

B

题意:

给你L,R,A,B四个数 要你找出一对在L,R范围内的数使得他们的GCD为A,LCM为B 问你有几对

解:

假设我们找到的数是X,Y 那么X*Y肯定为LCM*GCD 因为LCM=X*Y/GCD

所以我们只要在1~sqrt(LCM*GCD)范围内枚举数即可 但是LCM*GCD的最大值是1e18 平方根下来是1e9还是不行

我们观察到X,Y的GCD是X 那么就说明X,Y都是GCD的倍数 所以我们不用++枚举 直接+X枚举即可

这样的复杂度是sqrt(LCM*GCD)/GCD=sqrt(LCM/GCD)  LCM/GCD最大是1e9 可以接受

/*Huyyt*/
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int dir[][] = {{, }, {, }, {, -}, { -, }, {, }, {, -}, { -, -}, { -, }};
const int mod = 1e9 + , gakki = + + + + 1e9;
const int MAXN = 2e5 + , MAXM = 2e5 + , N = 2e5 + ;
const int MAXQ = ;
/*int to[MAXM << 1], nxt[MAXM << 1], Head[MAXN], tot = 1;
inline void addedge(int u, int v)
{
to[++tot] = v;
nxt[tot] = Head[u];
Head[u] = tot;
}*/
inline void read(int &v)
{
v = ;
char c = ;
int p = ;
while (c < '' || c > '')
{
if (c == '-')
{
p = -;
}
c = getchar();
}
while (c >= '' && c <= '')
{
v = (v << ) + (v << ) + c - '';
c = getchar();
}
v *= p;
}
ll gcd(ll a, ll b)
{
ll t;
while (b)
{
t = b;
b = a % b;
a = t;
}
return a;
}
int main()
{
ll l, r, x, y;
cin >> l >> r >> x >> y;
ll rl = l;
ll sum = x * y;
ll ans = ;
ll a, b;
if (l % x != )
{
l = (l / x + ) * x;
}
for (ll i = l; i <= sqrt(sum) && i <= r; i += x)
{
if (sum % i == )
{
a = i, b = sum / i;
if (b >= rl && b <= r)
{
if (gcd(a, b) == x)
{
if (a == b)
{
ans++;
}
else
{
ans += ;
}
//cout << a << " " << b << endl;
}
} }
}
cout << ans << endl;
return ;
}

C

题意:

你开始有X个裙子 你有K+1次增长机会 前K次会100%的增长一倍 但是增长后有50%的机会会减少一个

给你X,K(1e18) 问你最后裙子数量的期望值是多少(mod 1e9+7)

解:

纯推公式找规律题

我们很容易知道其实在K月之后(总共有K+1月)最后可能得到的裙子数是连续的

即如果刚开始有X个裙子且K=2时 他经过K月(没经过最后特殊的那一月)后可能得到的为 4*X,4*X-1,4*X-2,4*X-3 这四种答案

所以可以得到公式经过K月后的期望值为 (2k*X+2k*X-2k+1)*2k/2/2k=(2k+1*X-2k+1)/2

这是K月后的期望值 还有最后一月要*2 所以直接*2 最后的答案即为2k+1*X-2k+1

/*Huyyt*/
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int dir[][] = {{, }, {, }, {, -}, { -, }, {, }, {, -}, { -, -}, { -, }};
const int mod = 1e9 + , gakki = + + + + 1e9;
const int MAXN = 2e5 + , MAXM = 2e5 + , N = 2e5 + ;
const int MAXQ = ;
/*int to[MAXM << 1], nxt[MAXM << 1], Head[MAXN], tot = 1;
inline void addedge(int u, int v)
{
to[++tot] = v;
nxt[tot] = Head[u];
Head[u] = tot;
}*/
inline void read(int &v)
{
v = ;
char c = ;
int p = ;
while (c < '' || c > '')
{
if (c == '-')
{
p = -;
}
c = getchar();
}
while (c >= '' && c <= '')
{
v = (v << ) + (v << ) + c - '';
c = getchar();
}
v *= p;
}
ll Qpow(ll a, ll b)
{
ll ans = , base = a;
while (b != )
{
if (b & != )
{
ans *= base;
ans %= mod;
}
base *= base;
base %= mod;
b >>= 1LL;
}
return ans;
}
int main()
{
ll x, k;
cin >> x >> k;
if (x == )
{
cout << << endl;
return ;
}
ll ans1 = Qpow(, k + );
x %= mod;
ans1 = (ans1 * x) % mod;
ll ans2 = (Qpow(, k) - + mod) % mod;
cout << (ans1 - ans2 + mod) % mod << endl;
return ;
}

D

Codeforces 992 范围内GCD,LCM要求找一对数 衣柜裙子期望的更多相关文章

  1. Mathematics:GCD & LCM Inverse(POJ 2429)

    根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...

  2. hdu-3071 Gcd & Lcm game---质因数分解+状态压缩+线段树

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3071 题目大意: 给定一个长度为n的序列m次操作,操作的种类一共有三种 查询 L :查询一个区间的所 ...

  3. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  4. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  5. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  6. 洛谷 UVA11388 GCD LCM

    UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest intege ...

  7. POJ2429 GCD & LCM Inverse pollard_rho大整数分解

    Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and t ...

  8. [POJ 2429] GCD & LCM Inverse

    GCD & LCM Inverse Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10621   Accepted: ...

  9. POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)

    [题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...

随机推荐

  1. Pythonnumpy提取矩阵的某一行或某一列的实例

    Python numpy 提取矩阵的某一行或某一列的实例 下面小编就为大家分享一篇Python numpy 提取矩阵的某一行或某一列的实例,具有很好的参考价值,希望对大家有所帮助.一起跟随小编过来看看 ...

  2. LeetCode.1078-两词出现后的单词(Occurrences After Bigram)

    这是小川的第392次更新,第422篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第254题(顺位题号是1078).给出单词first和单词second,以"fi ...

  3. 通俗易懂的lambda表达式,不懂来找我!

    lambda是Python编程语言中使用频率较高的一个关键字.那么,什么是lambda?它有哪些用法?网上的文章汗牛充栋,可是把这个讲透的文章却不多.这里,我们通过阅读各方资料,总结了关于Python ...

  4. TensorFlow实战第四课(tensorboard数据可视化)

    tensorboard可视化工具 tensorboard是tensorflow的可视化工具,通过这个工具我们可以很清楚的看到整个神经网络的结构及框架. 通过之前展示的代码,我们进行修改从而展示其神经网 ...

  5. 天勤考研数据结构笔记—栈的C语言实现

    栈的基本概念 栈的定义:栈是一种只能在一端进行插入或删除操作的线性表.其中允许进行插入或删除的一端称为栈顶(top).栈顶是由一个称为栈顶指针的位置指示器(其实就是一个变量,对于顺序栈,就是数组索引, ...

  6. 使用javascript完成一个简单工厂设计模式。

    在JS中创建对象会习惯的使用new关键字和类构造函数(也是可以用对象字面量). 工厂模式就是一种有助于消除两个类依赖性的模式. 工厂模式分为简单工厂模式和复杂工厂模式,这篇主要讲简单工厂模式. 简单工 ...

  7. vs2019编译opencv

    序 微软家的宇宙第一ide:visual studio已经更新到了2019版,芒果也更新尝鲜了一遍,体验还不错,建议更新尝尝鲜.芒果顺便使用vs2019编译了一遍opencv,编译过程也非常顺利,以下 ...

  8. 从入门到自闭之Python列表,元祖及range

    1.列表 数据类型之一,存储数据,大量的,存储不同类型的数据 列表是一种有序的容器 支持索引 列表是一种可变数据类型 原地修改 列表中只要用逗号隔开的就是一个元素,字符串中只要是占一个位置的就是一个元 ...

  9. 使用Keras基于RCNN类模型的卫星/遥感地图图像语义分割

    遥感数据集 1. UC Merced Land-Use Data Set 图像像素大小为256*256,总包含21类场景图像,每一类有100张,共2100张. http://weegee.vision ...

  10. python:set() 函数

    描述 Python 内置函数 创建一个无序不重复元素集 可进行关系测试,删除重复数据 集合对象还支持union(联合), intersection(交), difference(差)和sysmmetr ...