Codeforces 992 范围内GCD,LCM要求找一对数 衣柜裙子期望
A
/*Huyyt*/
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int dir[][] = {{, }, {, }, {, -}, { -, }, {, }, {, -}, { -, -}, { -, }};
const int mod = 1e9 + , gakki = + + + + 1e9;
const int MAXN = 2e5 + , MAXM = 2e5 + , N = 2e5 + ;
const int MAXQ = ;
/*int to[MAXM << 1], nxt[MAXM << 1], Head[MAXN], tot = 1;
inline void addedge(int u, int v)
{
to[++tot] = v;
nxt[tot] = Head[u];
Head[u] = tot;
}*/
inline void read(int &v)
{
v = ;
char c = ;
int p = ;
while (c < '' || c > '')
{
if (c == '-')
{
p = -;
}
c = getchar();
}
while (c >= '' && c <= '')
{
v = (v << ) + (v << ) + c - '';
c = getchar();
}
v *= p;
}
map<int, int> mp;
int main()
{
int n;
read(n);
int ans = ;
mp[] = ;
for (int i = ; i <= n; i++)
{
int now;
read(now);
if (!mp[now])
{
mp[now] = ;
ans++;
}
}
cout << ans << endl;
return ;
}
B
题意:
给你L,R,A,B四个数 要你找出一对在L,R范围内的数使得他们的GCD为A,LCM为B 问你有几对
解:
假设我们找到的数是X,Y 那么X*Y肯定为LCM*GCD 因为LCM=X*Y/GCD
所以我们只要在1~sqrt(LCM*GCD)范围内枚举数即可 但是LCM*GCD的最大值是1e18 平方根下来是1e9还是不行
我们观察到X,Y的GCD是X 那么就说明X,Y都是GCD的倍数 所以我们不用++枚举 直接+X枚举即可
这样的复杂度是sqrt(LCM*GCD)/GCD=sqrt(LCM/GCD) LCM/GCD最大是1e9 可以接受
/*Huyyt*/
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int dir[][] = {{, }, {, }, {, -}, { -, }, {, }, {, -}, { -, -}, { -, }};
const int mod = 1e9 + , gakki = + + + + 1e9;
const int MAXN = 2e5 + , MAXM = 2e5 + , N = 2e5 + ;
const int MAXQ = ;
/*int to[MAXM << 1], nxt[MAXM << 1], Head[MAXN], tot = 1;
inline void addedge(int u, int v)
{
to[++tot] = v;
nxt[tot] = Head[u];
Head[u] = tot;
}*/
inline void read(int &v)
{
v = ;
char c = ;
int p = ;
while (c < '' || c > '')
{
if (c == '-')
{
p = -;
}
c = getchar();
}
while (c >= '' && c <= '')
{
v = (v << ) + (v << ) + c - '';
c = getchar();
}
v *= p;
}
ll gcd(ll a, ll b)
{
ll t;
while (b)
{
t = b;
b = a % b;
a = t;
}
return a;
}
int main()
{
ll l, r, x, y;
cin >> l >> r >> x >> y;
ll rl = l;
ll sum = x * y;
ll ans = ;
ll a, b;
if (l % x != )
{
l = (l / x + ) * x;
}
for (ll i = l; i <= sqrt(sum) && i <= r; i += x)
{
if (sum % i == )
{
a = i, b = sum / i;
if (b >= rl && b <= r)
{
if (gcd(a, b) == x)
{
if (a == b)
{
ans++;
}
else
{
ans += ;
}
//cout << a << " " << b << endl;
}
} }
}
cout << ans << endl;
return ;
}
C
题意:
你开始有X个裙子 你有K+1次增长机会 前K次会100%的增长一倍 但是增长后有50%的机会会减少一个
给你X,K(1e18) 问你最后裙子数量的期望值是多少(mod 1e9+7)
解:
纯推公式找规律题
我们很容易知道其实在K月之后(总共有K+1月)最后可能得到的裙子数是连续的
即如果刚开始有X个裙子且K=2时 他经过K月(没经过最后特殊的那一月)后可能得到的为 4*X,4*X-1,4*X-2,4*X-3 这四种答案
所以可以得到公式经过K月后的期望值为 (2k*X+2k*X-2k+1)*2k/2/2k=(2k+1*X-2k+1)/2
这是K月后的期望值 还有最后一月要*2 所以直接*2 最后的答案即为2k+1*X-2k+1
/*Huyyt*/
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int dir[][] = {{, }, {, }, {, -}, { -, }, {, }, {, -}, { -, -}, { -, }};
const int mod = 1e9 + , gakki = + + + + 1e9;
const int MAXN = 2e5 + , MAXM = 2e5 + , N = 2e5 + ;
const int MAXQ = ;
/*int to[MAXM << 1], nxt[MAXM << 1], Head[MAXN], tot = 1;
inline void addedge(int u, int v)
{
to[++tot] = v;
nxt[tot] = Head[u];
Head[u] = tot;
}*/
inline void read(int &v)
{
v = ;
char c = ;
int p = ;
while (c < '' || c > '')
{
if (c == '-')
{
p = -;
}
c = getchar();
}
while (c >= '' && c <= '')
{
v = (v << ) + (v << ) + c - '';
c = getchar();
}
v *= p;
}
ll Qpow(ll a, ll b)
{
ll ans = , base = a;
while (b != )
{
if (b & != )
{
ans *= base;
ans %= mod;
}
base *= base;
base %= mod;
b >>= 1LL;
}
return ans;
}
int main()
{
ll x, k;
cin >> x >> k;
if (x == )
{
cout << << endl;
return ;
}
ll ans1 = Qpow(, k + );
x %= mod;
ans1 = (ans1 * x) % mod;
ll ans2 = (Qpow(, k) - + mod) % mod;
cout << (ans1 - ans2 + mod) % mod << endl;
return ;
}
D
Codeforces 992 范围内GCD,LCM要求找一对数 衣柜裙子期望的更多相关文章
- Mathematics:GCD & LCM Inverse(POJ 2429)
根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...
- hdu-3071 Gcd & Lcm game---质因数分解+状态压缩+线段树
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3071 题目大意: 给定一个长度为n的序列m次操作,操作的种类一共有三种 查询 L :查询一个区间的所 ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)
题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd lcm/gcd=a/gcd*b/gcd 可知a/gc ...
- Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论
Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...
- 洛谷 UVA11388 GCD LCM
UVA11388 GCD LCM Description of the title PDF The GCD of two positive integers is the largest intege ...
- POJ2429 GCD & LCM Inverse pollard_rho大整数分解
Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and t ...
- [POJ 2429] GCD & LCM Inverse
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10621 Accepted: ...
- POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)
[题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...
随机推荐
- Pythonnumpy提取矩阵的某一行或某一列的实例
Python numpy 提取矩阵的某一行或某一列的实例 下面小编就为大家分享一篇Python numpy 提取矩阵的某一行或某一列的实例,具有很好的参考价值,希望对大家有所帮助.一起跟随小编过来看看 ...
- LeetCode.1078-两词出现后的单词(Occurrences After Bigram)
这是小川的第392次更新,第422篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第254题(顺位题号是1078).给出单词first和单词second,以"fi ...
- 通俗易懂的lambda表达式,不懂来找我!
lambda是Python编程语言中使用频率较高的一个关键字.那么,什么是lambda?它有哪些用法?网上的文章汗牛充栋,可是把这个讲透的文章却不多.这里,我们通过阅读各方资料,总结了关于Python ...
- TensorFlow实战第四课(tensorboard数据可视化)
tensorboard可视化工具 tensorboard是tensorflow的可视化工具,通过这个工具我们可以很清楚的看到整个神经网络的结构及框架. 通过之前展示的代码,我们进行修改从而展示其神经网 ...
- 天勤考研数据结构笔记—栈的C语言实现
栈的基本概念 栈的定义:栈是一种只能在一端进行插入或删除操作的线性表.其中允许进行插入或删除的一端称为栈顶(top).栈顶是由一个称为栈顶指针的位置指示器(其实就是一个变量,对于顺序栈,就是数组索引, ...
- 使用javascript完成一个简单工厂设计模式。
在JS中创建对象会习惯的使用new关键字和类构造函数(也是可以用对象字面量). 工厂模式就是一种有助于消除两个类依赖性的模式. 工厂模式分为简单工厂模式和复杂工厂模式,这篇主要讲简单工厂模式. 简单工 ...
- vs2019编译opencv
序 微软家的宇宙第一ide:visual studio已经更新到了2019版,芒果也更新尝鲜了一遍,体验还不错,建议更新尝尝鲜.芒果顺便使用vs2019编译了一遍opencv,编译过程也非常顺利,以下 ...
- 从入门到自闭之Python列表,元祖及range
1.列表 数据类型之一,存储数据,大量的,存储不同类型的数据 列表是一种有序的容器 支持索引 列表是一种可变数据类型 原地修改 列表中只要用逗号隔开的就是一个元素,字符串中只要是占一个位置的就是一个元 ...
- 使用Keras基于RCNN类模型的卫星/遥感地图图像语义分割
遥感数据集 1. UC Merced Land-Use Data Set 图像像素大小为256*256,总包含21类场景图像,每一类有100张,共2100张. http://weegee.vision ...
- python:set() 函数
描述 Python 内置函数 创建一个无序不重复元素集 可进行关系测试,删除重复数据 集合对象还支持union(联合), intersection(交), difference(差)和sysmmetr ...