[luogu]P2680

[NOIP2015]运输计划

题目背景

公元 2044 年,人类进入了宇宙纪元。

题目描述

L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条航道连通了 L 国的所有星球。

小 P 掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物

流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道 是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之 间不会产生任何干扰。

为了鼓励科技创新,L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小 P 把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。

在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后, 这 m 个运输计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的 物流公司的阶段性工作就完成了。

如果小 P 可以自由选择将哪一条航道改造成虫洞,试求出小 P 的物流公司完成阶段 性工作所需要的最短时间是多少?

输入输出格式

输入格式:

输入文件名为
transport.in。

第一行包括两个正整数 n、m,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。

接下来 n-1 行描述航道的建设情况,其中第 i 行包含三个整数 ai, bi 和 ti,表示第

i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。

接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j个
运输计划是从 uj 号星球飞往 vj 号星球。

输出格式:

输出 共1行,包含1个整数,表示小P的物流公司完成阶段性工作所需要的最短时间。

输入输出格式

输入样例1#:

6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5

输出样例1#:

11

说明


题目大概就是要使一条边的权值变为零,使得选择的所有路径的长度值最大值最小。

考虑二分答案,但这个检验怎么搞啊?

对于一个二分长度mid,先把那些比它长的标记一下记录为num个,之后枚举每一条边,如果覆盖这条边的所有路径数为num,且这条边的权值>=(MAX-mid)。

然后我还是不会搞,所以去看大佬们写的题解,说是要树上差分,我*,这又是什么鬼,今天一定要好好学习一下,就拿这题练手。

对于一个(u,v)点对,f[u]++,f[v]++,f[lca(u,v)]-=2,这样一来如果对i的子树的f求和,得到的值就是(i,fa[i])这条边被用了几次。

这样检验就能在O(n+m)完成。

lca我只会写树剖啊。

这数据是不是有点奇怪啊,我有一个点差点T了...(好把,其实应该是蒟蒻我太弱了~_~)

代码:

 //2017.11.2
 //tree 差分 二分
 #include<iostream>
 #include<cstdio>
 #include<cstring>
 using namespace std;
 inline int read();
 int Max(int x,int y){return x>y?x:y;}
 ?x:-x;}
 namespace lys{
      ;
     struct edge{
         int to;
         int next;
         int w;
     }e[N*];
     int sum[N],f[N],pre[N],fa[N],siz[N],dep[N],top[N],lca[N],len[N],u[N],v[N],dis[N],d[N],son[N];
     bool used[N];
     int n,m,cnt,M;
     void add(int x,int y,int w){
         e[++cnt].to=y;e[cnt].next=pre[x];pre[x]=cnt;e[cnt].w=w;
         e[++cnt].to=x;e[cnt].next=pre[y];pre[y]=cnt;e[cnt].w=w;
     }
     void dfs1(int node,int deep){
         dep[node]=deep;
         siz[node]=;
         int i,v;
         for(i=pre[node];~i;i=e[i].next){
             v=e[i].to;
             if(v==fa[node]) continue ;
             fa[v]=node;
             d[v]=e[i].w;
             dfs1(v,deep+);
             siz[node]+=siz[v];
             if(siz[son[node]]<siz[v]) son[node]=v;
         }
     }
     void dfs2(int node,int tp,int ds){
         top[node]=tp;
         dis[node]=ds+d[node];
         if(!son[node]) return ;
         dfs2(son[node],tp,dis[node]);
         int i,v;
         for(i=pre[node];~i;i=e[i].next){
             v=e[i].to;
             if(v==fa[node]||v==son[node]) continue ;
             dfs2(v,v,);
         }
     }
     void LCA(int x,int y,int pos){
         int f1,f2;
         while(true){
             f1=top[x],f2=top[y];
             if(f1==f2){
                 if(dep[x]<dep[y]) lca[pos]=x;
                 else lca[pos]=y;
                 len[pos]+=ABS(dis[x]-dis[y]);
                 return ;
             }
             if(dep[f1]<dep[f2]){
                 len[pos]+=dis[y];
                 y=fa[f2];
             }
             else{
                 len[pos]+=dis[x];
                 x=fa[f1];
             }
         }
     }
     void dfs(int node){
         int i,v;
         sum[node]=f[node];
         f[node]=;
         for(i=pre[node];~i;i=e[i].next){
             v=e[i].to;
             if(v==fa[node]) continue ;
             dfs(v);
             sum[node]+=sum[v];
         }
     }
     bool chk(int mid){
         ;
         ;i<=m;i++) if(len[i]>mid) num++,used[i]=true ;
         ;i<=m;i++)
             ,used[i]=false ;
         dfs();
         ;i<=n;i++) if(sum[i]>=num&&d[i]>=(M-mid)) return true ;
         return false ;
     }
     int main(){
         int i,x,y,w;
         n=read(); m=read();
         memset(pre,-,sizeof pre);
         ;i<n;i++){
             x=read(); y=read(); w=read();
             add(x,y,w);
         }
         dfs1(,),dfs2(,,);
         ;i<=m;i++){
             u[i]=read(); v[i]=read();
             LCA(u[i],v[i],i);
             M=Max(M,len[i]);
         }
         ,r=M,mid;
         while(l<r){
             mid=(l+r)>>;
             if(chk(mid)) r=mid;
             ;
         }
         printf("%d\n",l);
         ;
     }
 }
 int main(){
     lys::main();
     ;
 }
 inline int read(){
     ,ff=;
     char c=getchar();
     '){
         ;
         c=getchar();
     }
     +c-',c=getchar();
     return kk*ff;
 }

[luogu]P2680 运输计划[二分答案][树上差分]的更多相关文章

  1. luogu P2680 运输计划 (二分答案+树上差分)

    题目背景 公元 20442044 年,人类进入了宇宙纪元. 题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条航道建立在两个星球之间 ...

  2. P2680 运输计划[二分+LCA+树上差分]

    题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条航道建立在两个星球之间,这 n-1n−1 条航道连通了 LL 国的所有星球. 小 ...

  3. loj2425 「NOIP2015」运输计划[二分答案+树上差分]

    看到题意最小化最长路径,显然二分答案,枚举链长度不超过$\text{mid}$,然后尝试检验.````` 检验是否存在这样一个边置为0后,全部链长$\le\text{mid}$,其最终目标就是.要让所 ...

  4. Luogu P2680 运输计划(二分+树上差分)

    P2680 运输计划 题意 题目背景 公元\(2044\)年,人类进入了宇宙纪元. 题目描述 公元\(2044\)年,人类进入了宇宙纪元. \(L\)国有\(n\)个星球,还有\(n-1\)条双向航道 ...

  5. 洛谷P2680 运输计划 [LCA,树上差分,二分答案]

    题目传送门 运输计划 Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n?1 条双向航道,每条航道建立在两个星球之间, 这 n?1 条航道连通了 L 国的所 ...

  6. 洛谷P2680 运输计划(倍增LCA + 树上差分 + 二分答案)

    [题目链接] [思路]: 根据题意可以明显看出,当所有任务都完成时的时间是最终的结果,也就是说本题要求,求出最小的最大值. 那这样的话就暗示了将答案二分,进行check. [check方法]: 如果说 ...

  7. BZOJ 4326: NOIP2015 运输计划(二分,树上差分)

    Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1945  Solved: 1243[Submit][Status][Discuss] Descript ...

  8. 洛谷 P2680 运输计划-二分+树上差分(边权覆盖)

    P2680 运输计划 题目背景 公元 20442044 年,人类进入了宇宙纪元. 题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条 ...

  9. luoguP2680 运输计划 题解(二分答案+树上差分)

    P2680 运输计划  题目 这道题如果是看的我的树上差分来的,那么肯定一看题目就可以想到树上差分. 至于这是怎么想到的,一步一步来: 1.n有300000,不可能暴力枚举每一条边 2.因为我们要使运 ...

随机推荐

  1. 快速编写 <a> ————CSS3

    a{ text-decoration:none; } a:link{ color:white; } a:visited { color:white; } a:hover { color:blue; } ...

  2. charles抓包教程

    百度搜索下载charles 默认安装即可完成 1.双击charles.exe启动,我的是4.2.7版本.最好下载原版的不要去破解中文,会有不兼容 1.搜索该软件许可证书并输入即可长期使用 2.设置代理 ...

  3. Html5 Canvas斗地主游戏

    过完年来公司,没什么事,主管说研究下html5 游戏,然后主管就给了一个斗地主的demo,随后我就开始看代码, 现在我看了html5以及canvas相关知识和斗地主的demo后,自己用demo上的素材 ...

  4. debian下安装mysql 5.1.34

    #cd /usr/local/src # tar xvzf mysql-5.1.34.tar.gz # cd mysql-5.5.1.34 配置和编译 #chmod +x configure # ./ ...

  5. ssh-config的使用

    使用SSH的配置文件可以在很大程度上方便各种操作,特别适应于有多个SSH帐号.使用非标准端口或者写脚本等情况. man ssh_config 可以查看手册 如果之前是用密码方式来登录SSH,需要先改用 ...

  6. 第四周预习作业and第五周作业

    第四周预习作业 统计一行文本的单词个数 本题目要求编写程序统计一行字符中单词的个数.所谓"单词"是指连续不含空格的字符串,各单词之间用空格分隔,空格数可以是多个. 输入格式: 输入 ...

  7. java基础知识部分知识点

    1.Java常见的注释有哪些,语法是怎样的? 1)单行注释用//表示,编译器看到//会忽略该行//后的所文本  2)多行注释/* */表示,编译器看到/*时会搜索接下来的*/,忽略掉/* */之间的文 ...

  8. JDK11 | 第六篇 : Epsilon 垃圾收集器

    文章首发于公众号<程序员果果> 地址 : https://mp.weixin.qq.com/s/RhGXJImhp7Xm-wDrpPomkQ 一.简介 Epsilon(A No-Op Ga ...

  9. Linux菜狗入门(不停更新)

    资料来源:<腾讯课堂> 1, 计算机硬件包括CPU,内存,硬盘,声卡等等 2, 没有安装操作系统的计算机,通常被称为裸机 如果想在裸机上运行自己所编写的程序,就必须用机器语言书写程序 如果 ...

  10. 通过编写串口助手工具学习MFC过程——(十)UpdateData()用法和编辑框的赋值、取值

    通过编写串口助手工具学习MFC过程 因为以前也做过几次MFC的编程,每次都是项目完成时,MFC基本操作清楚了,但是过好长时间不再接触MFC的项目,再次做MFC的项目时,又要从头开始熟悉.这次通过做一个 ...