Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 223    Accepted Submission(s): 151

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

 
Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1≤T≤300
3≤n≤100
−10000≤xi,yi≤10000
All coordinates are distinct.

 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 
Source
 题意:给你n个整数点,问这n个点能否组成正多边形。因为都是整数点,所以组成的正多边形只能是正方形。所以只需判断是否为正方形就好啦
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring> using namespace std; #define N 25 int n; struct node
{
int x, y;
}P[N]; int slove(int i, int j, int k, int q) // 判断是否为正四边形
{
if(i == j || i == k) // 不能有重点
return false;
if(i == q || j == k)
return false;
if(j == q || k == q)
return false; int w = 0, num[8];
memset(num, 0, sizeof(num)); num[w++] = (P[i].x-P[j].x)*(P[i].x-P[j].x)+(P[i].y-P[j].y)*(P[i].y-P[j].y);
num[w++] = (P[i].x-P[k].x)*(P[i].x-P[k].x)+(P[i].y-P[k].y)*(P[i].y-P[k].y);
num[w++] = (P[i].x-P[q].x)*(P[i].x-P[q].x)+(P[i].y-P[q].y)*(P[i].y-P[q].y);
num[w++] = (P[j].x-P[k].x)*(P[j].x-P[k].x)+(P[j].y-P[k].y)*(P[j].y-P[k].y);
num[w++] = (P[j].x-P[q].x)*(P[j].x-P[q].x)+(P[j].y-P[q].y)*(P[j].y-P[q].y);
num[w++] = (P[q].x-P[k].x)*(P[q].x-P[k].x)+(P[q].y-P[k].y)*(P[q].y-P[k].y); sort(num, num+w); w = unique(num, num+w) - num; if(w != 2) // 只能有两种不相同的边
return false;
return true;
} int main()
{
int t;
scanf("%d\n", &t);
while(t--)
{
scanf("%d", &n); int ans = 0; for(int i = 1; i <= n; i++)
scanf("%d%d", &P[i].x, &P[i].y);
if(n != 4)
{
printf("NO\n");
continue;
} for(int i = 1; i <= n; i++)
for(int j = i+1; j <= n; j++)
for(int k = j+1; k <= n; k++)
for(int q = k+1; q <= n; q++)
if(slove(i, j, k, q))
ans++;
if(ans != 0)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

  

Dancing Stars on Me的更多相关文章

  1. 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  2. hdu 5533 Dancing Stars on Me 水题

    Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  3. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

  4. Dancing Stars on Me(判断正多边形)

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  5. HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力

    Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...

  6. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  7. 【2015 ICPC亚洲区域赛长春站 G】Dancing Stars on Me(几何+暴力)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  8. Dancing Stars on Me---hdu5533(判断是否为正多边形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 题意:平面图中 有n个点给你每个点的坐标,判断是否能通过某种连线使得这些点所组成的n边形为 正n ...

  9. 【HDOJ5533】Dancing Stars on Me(计算几何)

    题意:给定二维平面上的n个整点,问它们是否都在正n边形的定点上 n<=100,abs(x[i]),abs(y[i])<=1e4 思路:队友做的,抱大腿 可以发现只有n=4时顶点有可能都是整 ...

随机推荐

  1. k8s/01开启云原生之门(Mooc)

    一.kubernetes(k8s)基础知识 1.简介 在2017年Kubernetes战胜了两个强大的竞争对手Swarm和Mesos,成为容器管理与调度编排领域的首选平台和事实标准. 2014年k8s ...

  2. .Net Core - 使用Supervisor进行托管部署

    环境 CentOS 7 x64,详见 安装CentOS7虚拟机 .Net Core 2.1.801 详见 CentOS 7 下安装.NET Core SDK 2.1 ftp  详见  CentOS7 ...

  3. java基础笔记(8)

    java的多线程 进程:程序的执行过程,持有内存资源 线程:是系统的最小执行单元,共享进程的资源 线程之间可以互斥.也可以同步: Thraed类: 通过一个案例来了解线程Thread类和Runnabl ...

  4. div绝对定位居中

    绝对定位absolute,left:50%,加上margin-left:-(宽度/2),可以实现绝对位置居中 .list{ width: 1200px; height: 300px; overflow ...

  5. 2019 红帽杯 Re WP

    0x01 xx 测试文件:https://www.lanzous.com/i7dyqhc 1.准备 获取信息 64位文件 2.IDA打开 使用Findcrypt脚本可以看到 结合文件名是xx,因此猜测 ...

  6. CSS链接使用伪类的顺序

    顺序为:link-visited-hover-active a:link {color: #FF0000} /* 未访问的链接 */ a:visited {color: #00FF00} /* 已访问 ...

  7. Django扩展内置User类

    内置User类 使用内置User可以方便实现登录验证,利用Admin管理界面还可以方便添加.删除.修改用户. 一个内置的User类定义了以下字段: username: 用户名 password: 密码 ...

  8. 大数据数据库HBase(一)——架构原理

    一.HBase简介 1.1.Hadoop生态系统 1.2.非关系型数据库知识面扩展  Cassandra hbase mongodb Couchdb,文件存储数据库 Neo4j非关系型图数据库 1.3 ...

  9. pam模块

    main 循环监控 独立的程序 根据配置防护 登陆 ca cert 私有口令 openssl 证书口令??

  10. POI2012 ODL-Distance

    链接P3532 [POI2012]ODL-Distance 设\(f_{i,j}\)表示他给定的函数,\(g_i\)表示\(i\)的质因数个数 那么\[f_{i,j}=g_{\frac {i*j}{g ...