Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 223    Accepted Submission(s): 151

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

 
Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1≤T≤300
3≤n≤100
−10000≤xi,yi≤10000
All coordinates are distinct.

 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 
Source
 题意:给你n个整数点,问这n个点能否组成正多边形。因为都是整数点,所以组成的正多边形只能是正方形。所以只需判断是否为正方形就好啦
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring> using namespace std; #define N 25 int n; struct node
{
int x, y;
}P[N]; int slove(int i, int j, int k, int q) // 判断是否为正四边形
{
if(i == j || i == k) // 不能有重点
return false;
if(i == q || j == k)
return false;
if(j == q || k == q)
return false; int w = 0, num[8];
memset(num, 0, sizeof(num)); num[w++] = (P[i].x-P[j].x)*(P[i].x-P[j].x)+(P[i].y-P[j].y)*(P[i].y-P[j].y);
num[w++] = (P[i].x-P[k].x)*(P[i].x-P[k].x)+(P[i].y-P[k].y)*(P[i].y-P[k].y);
num[w++] = (P[i].x-P[q].x)*(P[i].x-P[q].x)+(P[i].y-P[q].y)*(P[i].y-P[q].y);
num[w++] = (P[j].x-P[k].x)*(P[j].x-P[k].x)+(P[j].y-P[k].y)*(P[j].y-P[k].y);
num[w++] = (P[j].x-P[q].x)*(P[j].x-P[q].x)+(P[j].y-P[q].y)*(P[j].y-P[q].y);
num[w++] = (P[q].x-P[k].x)*(P[q].x-P[k].x)+(P[q].y-P[k].y)*(P[q].y-P[k].y); sort(num, num+w); w = unique(num, num+w) - num; if(w != 2) // 只能有两种不相同的边
return false;
return true;
} int main()
{
int t;
scanf("%d\n", &t);
while(t--)
{
scanf("%d", &n); int ans = 0; for(int i = 1; i <= n; i++)
scanf("%d%d", &P[i].x, &P[i].y);
if(n != 4)
{
printf("NO\n");
continue;
} for(int i = 1; i <= n; i++)
for(int j = i+1; j <= n; j++)
for(int k = j+1; k <= n; k++)
for(int q = k+1; q <= n; q++)
if(slove(i, j, k, q))
ans++;
if(ans != 0)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

  

Dancing Stars on Me的更多相关文章

  1. 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  2. hdu 5533 Dancing Stars on Me 水题

    Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  3. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

  4. Dancing Stars on Me(判断正多边形)

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  5. HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力

    Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...

  6. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  7. 【2015 ICPC亚洲区域赛长春站 G】Dancing Stars on Me(几何+暴力)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  8. Dancing Stars on Me---hdu5533(判断是否为正多边形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 题意:平面图中 有n个点给你每个点的坐标,判断是否能通过某种连线使得这些点所组成的n边形为 正n ...

  9. 【HDOJ5533】Dancing Stars on Me(计算几何)

    题意:给定二维平面上的n个整点,问它们是否都在正n边形的定点上 n<=100,abs(x[i]),abs(y[i])<=1e4 思路:队友做的,抱大腿 可以发现只有n=4时顶点有可能都是整 ...

随机推荐

  1. python+selenium操作cookie

    WebDriver提供了操作Cookie的相关方法,可以读取.添加和删除cookie信息. WebDriver操作cookie的方法: get_cookies(): 获得所有cookie信息. get ...

  2. 开篇——从程序员到IT经理

    2002年~2005年我在广州的广东水力电力职业技术学院求学,主修网络工程.求学期间,我从事最多的就是玩游戏,当时就是玩MU和CS,所以有一门编程课叫C语言的“肥佬”(广东话)了,要补考,没办法,于是 ...

  3. Spring Boot 2.2.0 正式发布,支持 JDK 13!

    Java技术栈 www.javastack.cn 优秀的Java技术公众号 推荐阅读: Spring Boot 2.2.0 正式发布了,可从 repo.spring.io 或是 Maven Centr ...

  4. 1、Java语言概述与开发环境——JDK的安装与环境变量的配置

    Selenium.Appium.Macaca.RobotFramework.Jmeter等框架或工具均必须的一样东西——JDK,也就是基于java开发的东西都要这个东西.JDK的概念在这里不作描述. ...

  5. Python 入门之 Python三大器 之 迭代器

    Python 入门之 Python三大器 之 迭代器 1.迭代器 (1)可迭代对象: <1> 只要具有__ iter __()方法就是一个可迭代对象 (我们可以通过dir()方法去判断一个 ...

  6. 执行npm publish 报错:403 Forbidden - PUT https://registry.npmjs.org/kunmomotest - you must verify your email before publishing a new package: https://www.npmjs.com/email-edit

    前言 执行npm publish 报错:403 Forbidden - PUT https://registry.npmjs.org/kunmomotest - you must verify you ...

  7. 同步锁 synchronized

    package ba; public class Tongbu implements Runnable{ int i=100; public void run(){ while(true){ sell ...

  8. k3 cloud提示超出产品激活有效期

    k3 cloud提示超出产品激活有效期,请联系系统管理员登录管理中心进行产品激活(激活路径:许可中心-许可管理-产品激活) 首先进入管理中心:一次点击许可中心-产品激活 复制激活串号并点击金蝶正版验证 ...

  9. 生成EXCEL文件是经常需要用到的功能,我们利用一些开源库可以很容易实现这个功能。

    方法一:利用excellibrary,http://code.google.com/p/excellibrary/ excellibrary是国人写的开源组件,很容易使用,可惜貌似还不支持.xlsx( ...

  10. 解决tcp粘包

    粘包现象:只有tcp协议才会产生粘包,udp协议不会产生粘包 1.tcp协议下,发送端会采用一个优化算法(Nagle算法),把间隔时间短,数据比较小的包合并到一起,再一起发送过去,造成粘包 2.发送端 ...