Codeforces 776E: The Holmes Children (数论 欧拉函数)
先看题目中给的函数f(n)和g(n)
对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n)
证明f(n)=phi(n) 设有命题 对任意自然数x满足x<n,gcd(x,n)=1等价于gcd(x,y)=1 成立,则该式显然成立,下面证明这个命题。 假设gcd(x,y)=1时,gcd(x,n)=k!=1,则n=n'k,x=x'k,gcd(x,y)=gcd(x,n-x)=gcd(x'k,(n'-x')k)=k,与假设gcd(x,y)=1不符,故gcd(x,y)=1时,gcd(x,n)=1。同理可证gcd(x,n)=1时,gcd(x,y)=1。 综上,f(n)=phi(n)
对于g(n),,这个本人就不在博客里献丑了,推荐找本专门讲数论的书看下,估计都会有,这个可以当成是结论用,即 n的所有因数的欧拉函数之和等于n本身
解决了函数f(n)和g(n)的意义,剩下的就好解多了
时间上,由于连续进行两次n=phi(n)的运算至少可以将n减小为原来的一半,故肯定是不会T啦
#include<bits/stdc++.h>
using namespace std;
typedef long long LL; //单独求解单个phi(x)
LL Eular(LL n)
{
LL ret=n;
for(LL i=; i*i<= n; i++)
if(n%i==)
{
ret-=ret/i;
while(n%i==) n/= i;
}
if(n>) ret-=ret/n;
return ret;
} LL n,k; int main()
{
while(cin>>n>>k)
{
k=(k+)/;
while(k-- && n>)
n=Eular(n);
cout<<n%<<endl;
}
}
Codeforces 776E: The Holmes Children (数论 欧拉函数)的更多相关文章
- Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树
https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...
- 数论-欧拉函数-LightOJ - 1370
我是知道φ(n)=n-1,n为质数 的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...
- 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...
- Codeforces_776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
- 数论 - 欧拉函数模板题 --- poj 2407 : Relatives
Relatives Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11372 Accepted: 5544 Descri ...
- 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points
Visible Lattice Points Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5636 Accepted: ...
- HDU1695-GCD(数论-欧拉函数-容斥)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- 【数论·欧拉函数】SDOI2008仪仗队
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如右图 ...
随机推荐
- RabbitMQ-Window安装(一)
1.登录RabbitMq官网http://www.rabbitmq.com/ 2.点击Get Started 3.点击Download+Installation 4.找到Windows,点击 5.点击 ...
- Hive学习之路(一)Hive初识
Hive简介 什么是Hive Hive由Facebook实现并开源 是基于Hadoop的一个数据仓库工具 可以将结构化的数据映射为一张数据库表 提供HQL(Hive SQL)查询功能 底层数据是存储在 ...
- 设置VsCode自动换行
方法如下: 文件 -> 首选项 -> 设置 如果你是Mac则是右上角 Code -> 首选项 -> 设置 然后在右侧的编辑窗口中添加 1 "editor.wordWr ...
- 牛客提高D6t3 分班问题
分析 就就就是推柿子 看官方题解吧/px 代码 #include<iostream> #include<cstdio> #include<cstring> #inc ...
- rap安装mysql
1.yum仓库下载MySQL: yum localinstall https://repo.mysql.com//mysql80-community-release-el7-1.noarch.rpm ...
- springboot连接mysql报错:com.mysql.jdbc.exceptions.jdbc4.CommunicationsException
nested exception is org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. ...
- JavaScript GetAbsoultURl
var img = document.createElement('A'); img.src = "/img/weixin.jpg"; // 设置相对路径给Image, ...
- Survey Results for Rebecca Murpheys Learning JavaScript Survey
时间 2016-01-27 05:40:46 Raymond Camden's Blog 原文 http://www.raymondcamden.com/2016/01/25/survey-res ...
- spring-第十八篇之spring AOP基于XML配置文件的管理方式
1.在XML配置文件中配置切面.切入点.增强处理.spring-1.5之前只能使用XML Schema方式配置切面.切入点.增强处理. spring配置文件中,所有的切面.切入点.增强处理都必须定义在 ...
- hdu6333 Problem B. Harvest of Apples(组合数+莫队)
hdu6333 Problem B. Harvest of Apples 题目传送门 题意: 求(0,n)~(m,n)组合数之和 题解: C(n,m)=C(n-1,m-1)+C(n-1,m) 设 ...