题目描述

小w隐藏的心绪已经难以再隐藏下去了。小w有n+ 1(保证n为偶数)个心绪,每个都包含了[1,2n]的一个大小为n的子集。现在他要找到隐藏的任意两个心绪,使得他们的交大于等于n/2。

输入描述

一行一个整数n。接下来每行一个长度为k的字符串,该字符串是一个64进制表示,ASCII码为x的字符代表着x-33,所有字符在33到33+63之间。转为二进制表示有6k位,它的前2n个字符就是读入的集合,第i位为1表示这个集合包含i,为0表示不包含。

输出描述

一行两个不同的整数表示两个集合的编号。如果无解输出“NO Solution”。

样例输入

10
  EVK#
  IH=#
  676"
  R7,#
  74S"
  6V2#
  O3J#
  S-7$
  NU5"
  C[$$
  3N.#

样例输出

1 2

对于20%的数据满足n≤100。
  对于50%的数据满足n≤1×103
  对于100%的数据满足n≤6×103

分析

我觉得应该没有人会想到暴力即是正解

首先先看一眼数据规模,好像用int存字符串会炸内存,于是考虑用bitset

不然就像我一样爆零

然后就可以暴力地O(n3/32)地做啦

我们来验证一下它的正确性

任选出两个子集,考虑每个元素在两个子集中共有的概率,加起来就是期望共有的个数

由于总共有2n个元素,每个子集有n个元素,那么一个元素在子集内的概率就是$\frac 1 2$,

那么一个元素同时在两个子集内的概率就是$\frac 1 4$

所以任选两个子集期望的共有的个数是$\frac 1 4 \times 2n=\frac n 2$

当然,这个期望值是建立在数据纯随机的情况下的

我们接下来可以求一下在出题人控制了数据的情况下我们任选两个子集,子集的共有元素的期望个数

假设第i号元素有Si个子集拥有,那么对于i号元素就有$C_{Si}^2$种情况任选两个子集都包含i号元素,而任选两个子集的情况总数为$C_{n+1}^{2}$

所以对于i号元素,任选两个子集都包含它的概率为

$$\frac {C_{Si}^2}  {C_{n+1}^2}$$

任选两个子集的期望共有元素个数为

$$\sum_{i=1}^{2n} \frac {C_{Si}^2} {C_{n+1}^2}$$

显然出题人可以控制每个Si的大小来卡我们,但他无法控制其它数的大小。

我们只要求出这个东西的最小值就可以知道出题人是否能卡我们

而且我们还知道

$$\sum_{i=1}^{2n} Si=n(n+1)$$

所以我们化简一下这个式子

$$\sum_{i=1}^{2n} \frac {C_{Si}^2} {C_{n+1}^2}$$

$$=\frac { \sum_{i=1}^{2n} {C_{Si}^2} } {C_{n+1}^2}$$

$$=\frac {\sum_{i=1}^{2n} { \frac {Si \times (Si-1) } {2} } } { \frac {n \times (n+1)} {2} }$$

$$=\frac {\sum_{i=1}^{2n} {Si \times (Si-1)}} {n \times (n+1)}$$

$$=\frac {\sum_{i=1}^{2n} {Si^2} - \sum_{i=1}^{2n} {Si}} {n \times (n+1)}$$

$$=\frac {\sum_{i=1}^{2n} {Si^2} - n(n+1)} {n(n+1)}$$

接下来只需要根据$\sum_{i=1}^{2n} Si=n(n+1)$求出$\sum_{i=1}^{2n} {Si^2}$的最小值就好啦

我们可以小的情况推到大的情况,比如知道$a+b=x$,求$min(a^2+b^2)$

可以用均值不等式的思想来证明

因为$(a-b)^2 \geq 0$,所以$a^2+b^2 \geq 2ab$

又因为$(a+b)^2=x^2$,所以$2ab=x^2-a^2-b^2$

代入$a^2+b^2 \geq 2ab$就有$a^2+b^2 \geq {\frac {x^2} {2}}$

同理,因为

$$\sum_{i=1}^{2n}\sum_{j=1}^{2n}(Si-Sj)^2 \geq 0$$

所以

$$\sum_{i=1}^{2n}\sum_{j=1}^{2n}(Si^2+Sj^2-2SiSj) \geq 0$$

$$\sum_{i=1}^{2n}\sum_{j=1}^{2n}Si^2 + \sum_{i=1}^{2n}\sum_{j=1}^{2n}Sj^2 - \sum_{i=1}^{2n}\sum_{j=1}^{2n}2SiSj\geq 0$$

$$\sum_{i=1}^{2n}\sum_{j=1}^{2n}Si^2 + \sum_{i=1}^{2n}\sum_{j=1}^{2n}Sj^2\geq 2\sum_{i=1}^{2n}\sum_{j=1}^{2n}SiSj$$

$$2n\sum_{i=1}^{2n}Si^2 +2n\sum_{j=1}^{2n}Sj^2\geq 2\sum_{i=1}^{2n}\sum_{j=1}^{2n}SiSj$$

$$4n\sum_{i=1}^{2n}Si^2\geq 2\sum_{i=1}^{2n}\sum_{j=1}^{2n}SiSj$$

又因为$\sum_{i=1}^{2n} Si=n(n+1)$

所以

$$\left ( \sum_{i=1}^{2n} Si \right )^2=n^2(n+1)^2$$

$$\sum_{i=1}^{2n}\sum_{j=1}^{2n}SiSj=n^2(n+1)^2$$

代入上面的不等式就有

$$4n\sum_{i=1}^{2n}Si^2\geq 2\sum_{i=1}^{2n}\sum_{j=1}^{2n}SiSj=2n^2(n+1)^2$$

$$\sum_{i=1}^{2n}Si^2\geq \frac {n(n+1)^2} {2}$$

我们终于求出了$\sum_{i=1}^{2n}Si^2$的最小值

把它代入我们之前求出的式子里

$$\frac {\sum_{i=1}^{2n} {Si^2} - n(n+1)} {n(n+1)}\geq \frac {\frac {n(n+1)^2} {2}-n(n+1)} {n(n+1)}$$

$$=\frac {n+1} {2} -1=\frac {n-1} {2}$$

所以不管出题人怎么出数据,任选两个字符串共有元素的期望个数最小都是$\frac {n-1} {2}$,所以直接O(n^3/32)是很正确的

代码?我™手贱重启电脑清空了

【CSP模拟赛】Confess(数学 玄学)的更多相关文章

  1. CSP模拟赛游记

    时间:2019.10.5 考试时间:100分钟(连正式考试时间的一半还没有到)题目:由于某些原因不能公开. 由于第一次接触NOIinux系统所以连怎么建文件夹,调字体,如何编译都不知道,考试的前半小时 ...

  2. 【CSP模拟赛】starway(玄学建边 最小生成树)

    问題描述 小w伤心的走上了 Star way to heaven.   到天堂的道路是一个笛卡尔坐标系上一个n×m的长方形通道(顶点在(0,0))和(n,m)),小w从最左边任意一点进入,从右边任意一 ...

  3. 【CSP模拟赛】坏天平(数学&思维)

    蹭兄弟学校的题目做还不用自己出题的感觉是真的爽 题目描述 nodgd有一架快要坏掉的天平,这架天平右边的支架有问题,如果右边的总重量比左边多太多,天平就彻底坏掉了.现在nodgd手上有n种砝码,质量分 ...

  4. 【CSP模拟赛】方程(数学)

    题目描述 求关于x的方程:x1+x2+……xk=n的非负整数解的个数. 输入格式 仅一行,包含两个正整数n,k. 输出格式 一个整数,表示方程不同解的个数,这个数可能很大,你只需输出mod 20080 ...

  5. 【csp模拟赛5】限制 (restrict.cpp)--数学

    自己看吧: 爆搜代码: //春水初涨-春林初盛-春风十里-不如你 //----hzwer // 这是啥子题,读不懂-- //题意有问题 -- #include<iostream> #inc ...

  6. 20180606模拟赛T4——数学游戏

    数学游戏 题目描述: 小T又发脑残了,没错,她又要求奇怪的东西,这次她想知道[X,Y]之间整数有多少可以表示成K个不同的B的幂的和形势.如\(x,y,k,b=15,20,2,2\),则有: \[17= ...

  7. 【CSP模拟赛】Freda的迷宫(桥)

    题目描述 Freda是一个迷宫爱好者,她利用业余时间建造了许多迷宫.每个迷宫都是由若干房间和走廊构成的,每条走廊都连接着两个不同的房间,两个房间之间最多只有一条走廊直接相连,走廊都是双向通过.  黄昏 ...

  8. CSP模拟赛2游记

    这次由于有课迟到30min,了所以只考了70min. 调linux配置调了5min,只剩下65min了. T1:有点像标题统计,但要比他坑一点,而且我就被坑了,写了一个for(int i=1;i< ...

  9. 【CSP模拟赛】Freda的旗帜

    题目描述  要开运动会了,Freda承担起了制作全校旗帜的工作.旗帜的制作方法是这样的:Freda一共有C种颜色的布条,每种布条都有无数个,你可以认为这些布条的长.宽.厚都相等,只有颜色可能不同.每个 ...

随机推荐

  1. JVM性能优化--字节码技术

    一.字节码技术应用场景 AOP技术.Lombok去除重复代码插件.动态修改class文件等 二.字节技术优势 Java字节码增强指的是在Java字节码生成之后,对其进行修改,增强其功能,这种方式相当于 ...

  2. Python进阶----计算机基础知识(操作系统多道技术),进程概念, 并发概念,并行概念,多进程实现

    Python进阶----计算机基础知识(操作系统多道技术),进程概念, 并发概念,并行概念,多进程实现 一丶进程基础知识 什么是程序: ​   程序就是一堆文件 什么是进程: ​   进程就是一个正在 ...

  3. react性能优化要点

    1.减少render方法的调用 1.1继承React.PureComponent(会自动在内部使用shouldComponentUpdate方法对state或props进行浅比较.)或在继承自Reac ...

  4. 视频网站大杂烩--HTML+CSS练手项目1【Frameset】

    [本文为原创,转载请注明出处] 技术[CSS+HTML]   布局[Frameset] -------------------------------------------------------- ...

  5. getElementsByClassName兼容 封装

    众所周知,JS获取DOM有个getElementsByClassName,非常方便,但是呢,为了兼容某些浏览器(你懂的).只能 进行封装下了.解决方法如下 <!DOCTYPE html> ...

  6. CSS3 小黄人案例

    使用 CSS3 和 HTML5 制作一个小黄人. 结构代码: <div class="wrap"> <!-- 头发 --> <div class=&q ...

  7. Java虚拟机如何运行Java字节码

    一.Java的class文件的内容 1.首先编写一个简单的代码 public class StringDemo { public static void main(String[] args) { S ...

  8. Git管理修正(取消跟踪、合并commit)

    本文总结了最近使用Git时候遇到的两个问题: 1. 当将不必要跟踪的文件加入到仓库后如何处理? 2. 提交了多个功能相同的commit后如何处理? 总结经验 在创建仓库的一开始,就要设置号.gitig ...

  9. State Design Pattern

    注: 转载自 https://www.geeksforgeeks.org/state-design-pattern/  [以便查阅,非原创] State Design Pattern State pa ...

  10. 函数式接口(Functional Interface)

    原文链接:https://www.cnblogs.com/runningTurtle/p/7092632.html 阅读目录 什么是函数式接口(Functional Interface) 函数式接口用 ...