python 多线程剖析
先来看个栗子:
下面来看一下I/O秘籍型的线程,举个栗子——爬虫,下面是爬下来的图片用4个线程去写文件
#!/usr/bin/env python
# -*- coding:utf-8 -*- import re
import urllib
import threading
import Queue
import timeit def getHtml(url):
html_page = urllib.urlopen(url).read()
return html_page # 提取网页中图片的URL
def getUrl(html):
pattern = r'src="(http://img.*?)"' # 正则表达式
imgre = re.compile(pattern)
imglist = re.findall(imgre, html) # re.findall(pattern,string) 在string中寻找所有匹配成功的字符串,以列表形式返回值
return imglist class getImg(threading.Thread):
def __init__(self, queue, thread_name=0): # 线程公用一个队列
threading.Thread.__init__(self)
self.queue = queue
self.thread_name = thread_name
self.start() # 启动线程 # 使用队列实现进程间通信
def run(self):
global count
while (True):
imgurl = self.queue.get() # 调用队列对象的get()方法从队头删除并返回一个项目
urllib.urlretrieve(imgurl, 'E:\mnt\girls\%s.jpg' % count)
count += 1
if self.queue.empty():
break
self.queue.task_done() # 当使用者线程调用 task_done() 以表示检索了该项目、并完成了所有的工作时,那么未完成的任务的总数就会减少。
imglist = []
def main():
global imglist
url = "http://huaban.com/favorite/beauty/" # 要爬的网页地址
html = getHtml(url)
imglist = getUrl(html) def main_1():
global count
threads = []
count = 0
queue = Queue.Queue()
# 将所有任务加入队列
for img in imglist:
queue.put(img)
# 多线程爬去图片
for i in range(4):
thread = getImg(queue, i)
threads.append(thread)
# 阻塞线程,直到线程执行完成
for thread in threads:
thread.join() if __name__ == '__main__':
main()
t = timeit.Timer(main_1)
print t.timeit(1)
4个线程的执行耗时为:0.421320716723秒
修改一下main_1换成单线程的:
def main_1():
global count
threads = []
count = 0
queue = Queue.Queue()
# 将所有任务加入队列
for img in imglist:
queue.put(img)
# 多线程爬去图片
for i in range(1):
thread = getImg(queue, i)
threads.append(thread)
# 阻塞线程,直到线程执行完成
for thread in threads:
thread.join()
单线程的执行耗时为:1.35626623274秒

再来看一个:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import threading
import timeit def countdown(n):
while n > 0:
n -= 1 def task1():
COUNT = 100000000
thread1 = threading.Thread(target=countdown, args=(COUNT,))
thread1.start()
thread1.join() def task2():
COUNT = 100000000
thread1 = threading.Thread(target=countdown, args=(COUNT // 2,))
thread2 = threading.Thread(target=countdown, args=(COUNT // 2,))
thread1.start()
thread2.start()
thread1.join()
thread2.join() if __name__ == '__main__':
t1 = timeit.Timer(task1)
print "countdown in one thread ", t1.timeit(1)
t2 = timeit.Timer(task2)
print "countdown in two thread ", t2.timeit(1)
task1是单线程,task2是双线程,在我的4核的机器上的执行结果:
countdown in one thread 3.59939150155
countdown in two thread 9.87704289712
天呐,双线程比单线程计算慢了2倍多,这是为什么呢,因为countdown是CPU密集型任务(计算嘛)

I/O密集型任务:线程做I/O处理的时候会释放GIL,其他线程获得GIL,当该线程再做I/O操作时,又会释放GIL,如此往复;
CPU密集型任务:在多核多线程比单核多线程更差,原因是单核多线程,每次释放GIL,唤醒的哪个线程都能获取到GIL锁,所以能够无缝执行(单核多线程的本质就是顺序执行),但多核,CPU0释放GIL后,其他CPU上的线程都会进行竞争,但GIL可能会马上又被CPU0(CPU0上可能不止一个线程)拿到,导致其他几个CPU上被唤醒后的线程会醒着等待到切换时间后又进入待调度状态,这样会造成线程颠簸(thrashing),导致效率更低。
作者:Andy
出处:http://www.cnblogs.com/onepiece-andy/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
python 多线程剖析的更多相关文章
- Day9 - Python 多线程、进程
Python之路,Day9, 进程.线程.协程篇 本节内容 操作系统发展史介绍 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线 ...
- Python 多线程、进程
本节内容 操作系统发展史介绍 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者 ...
- Python多线程、进程、协程
本节内容 操作系统发展史介绍 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者 ...
- python多线程学习记录
1.多线程的创建 import threading t = t.theading.Thread(target, args--) t.SetDeamon(True)//设置为守护进程 t.start() ...
- python多线程编程
Python多线程编程中常用方法: 1.join()方法:如果一个线程或者在函数执行的过程中调用另一个线程,并且希望待其完成操作后才能执行,那么在调用线程的时就可以使用被调线程的join方法join( ...
- Python 多线程教程:并发与并行
转载于: https://my.oschina.net/leejun2005/blog/398826 在批评Python的讨论中,常常说起Python多线程是多么的难用.还有人对 global int ...
- python多线程
python多线程有两种用法,一种是在函数中使用,一种是放在类中使用 1.在函数中使用 定义空的线程列表 threads=[] 创建线程 t=threading.Thread(target=函数名,a ...
- python 多线程就这么简单(转)
多线程和多进程是什么自行google补脑 对于python 多线程的理解,我花了很长时间,搜索的大部份文章都不够通俗易懂.所以,这里力图用简单的例子,让你对多线程有个初步的认识. 单线程 在好些年前的 ...
- python 多线程就这么简单(续)
之前讲了多线程的一篇博客,感觉讲的意犹未尽,其实,多线程非常有意思.因为我们在使用电脑的过程中无时无刻都在多进程和多线程.我们可以接着之前的例子继续讲.请先看我的上一篇博客. python 多线程就这 ...
随机推荐
- 5种mysql日志分析工具比拼
5种mysql日志分析工具比拼 摘自: linux.chinaitlab.com 被阅读次数: 79 由 yangyi 于 2009-08-13 22:18:05 提供 mysql slow log ...
- Docker 镜像-管理-导入-导出
目录 Docker 镜像基本概念 Docker 镜像加速 Docker 镜像 常用命令 Docker 镜像的创建和导出导入 Docker 镜像基本概念 我们使用的容器都是基于镜像的,镜像是由多层组成的 ...
- Unity音乐喷泉效果
本文参考了该文,其素材也取之于该处 效果 实现效果(根据音乐的高低会产生不同的波纹): 可以观看视频来获得更好的体验. 波纹的实现 先模拟出如下效果: 通过鼠标的点击,产生一个扩散的圆圈. 如上图所示 ...
- 一次压测中tomcat生成session释放不及时导致的频繁fullgc性能优化案例
性能问题:老年代一直处于占满状态,为什么没有发生内存溢出 以HotSpot VM的分代式GC为例,普通对象分配都是在young gen进行的,具体是从在位于young gen中的eden space中 ...
- CSS样式表及选择器相关内容(二)-伪类与伪元素选择器
伪类与伪元素选择器归纳: 一.伪类选择器(伪类以":"开头,用在选择器后,用于指明元素在某种特殊的状态下才能被选中) 1.a标签伪类选择器,其他标签类似 eg: ...
- mac os catalina mongodb最新安装流程
1.brew安装 不推荐用brew,因为现在mongodb闭源了,brew里已经搜索不到mongodb,不过还是可以用brew安装的,这篇就不写了. 2.官网下载 直接去官网下载一个zip,解压完放到 ...
- [20190502]给显示输出加入时间戳.txt
[20190502]给显示输出加入时间戳.txt --//有别人问我执行脚本中timestamp.pl的代码,实际上有些文章里面有源代码,有一些忘记写上了.--//贴上:$ cat /usr/loca ...
- centos7 升级php7 添加配置epel源 报错:Cannot retrieve metalink for repository: epel. Please verify its path and try again
文章来自:循序渐渐linux:基础知识 一书 7.3章LAMP服务器搭建 日常故障 centos上好多软件升级需要配置epel源 其中有一点小插曲 需要手动更改 1.很多时候,对PHP环境要求较新的版 ...
- Bayesian Optimization使用Hyperopt进行参数调优
超参数优化 Bayesian Optimization使用Hyperopt进行参数调优 1. 前言 本文将介绍一种快速有效的方法用于实现机器学习模型的调参.有两种常用的调参方法:网格搜索和随机搜索.每 ...
- python--微信小程序“跳一跳‘外挂
参考网站:http://blog.csdn.net/LittleBeautiful/article/details/78955792 0x00:准备工具: Windows 10: 一个安卓真机 pyt ...