各种字符串Hash函数(转)
/// @brief BKDR Hash Function
/// @detail 本 算法由于在Brian Kernighan与Dennis Ritchie的《The C Programming Language》一书被展示而得 名,是一种简单快捷的hash算法,也是Java目前采用的字符串的Hash算法(累乘因子为31)。
template<class T>
size_t BKDRHash(const T *str)
{
register size_t hash = ;
while (size_t ch = (size_t)*str++)
{
hash = hash * + ch; // 也可以乘以31、131、1313、13131、131313..
// 有人说将乘法分解为位运算及加减法可以提高效率,如将上式表达为:hash = hash << 7 + hash << 1 + hash + ch;
// 但其实在Intel平台上,CPU内部对二者的处理效率都是差不多的,
// 我分别进行了100亿次的上述两种运算,发现二者时间差距基本为0(如果是Debug版,分解成位运算后的耗时还要高1/3);
// 在ARM这类RISC系统上没有测试过,由于ARM内部使用Booth's Algorithm来模拟32位整数乘法运算,它的效率与乘数有关:
// 当乘数8-31位都为1或0时,需要1个时钟周期
// 当乘数16-31位都为1或0时,需要2个时钟周期
// 当乘数24-31位都为1或0时,需要3个时钟周期
// 否则,需要4个时钟周期
// 因此,虽然我没有实际测试,但是我依然认为二者效率上差别不大
}
return hash;
}
/// @brief SDBM Hash Function
/// @detail 本算法是由于在开源项目SDBM(一种简单的数据库引擎)中被应用而得名,它与BKDRHash思想一致,只是种子不同而已。
template<class T>
size_t SDBMHash(const T *str)
{
register size_t hash = ;
while (size_t ch = (size_t)*str++)
{
hash = * hash + ch;
//hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;
}
return hash;
}
/// @brief RS Hash Function
/// @detail 因Robert Sedgwicks在其《Algorithms in C》一书中展示而得名。
template<class T>
size_t RSHash(const T *str)
{
register size_t hash = ;
size_t magic = ;
while (size_t ch = (size_t)*str++)
{
hash = hash * magic + ch;
magic *= ;
}
return hash;
}
/// @brief AP Hash Function
/// @detail 由Arash Partow发明的一种hash算法。
template<class T>
size_t APHash(const T *str)
{
register size_t hash = ;
size_t ch;
for (long i = ; ch = (size_t)*str++; i++)
{
if ((i & ) == )
{
hash ^= ((hash << ) ^ ch ^ (hash >> ));
}
else
{
hash ^= (~((hash << ) ^ ch ^ (hash >> )));
}
}
return hash;
}
/// @brief JS Hash Function
/// 由Justin Sobel发明的一种hash算法。
template<class T>
size_t JSHash(const T *str)
{
if(!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return ;
register size_t hash = ;
while (size_t ch = (size_t)*str++)
{
hash ^= ((hash << ) + ch + (hash >> ));
}
return hash;
}
/// @brief DEK Function
/// @detail 本算法是由于Donald E. Knuth在《Art Of Computer Programming Volume 3》中展示而得名。
template<class T>
size_t DEKHash(const T* str)
{
if(!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return ;
register size_t hash = ;
while (size_t ch = (size_t)*str++)
{
hash = ((hash << ) ^ (hash >> )) ^ ch;
}
return hash;
}
/// @brief FNV Hash Function
/// @detail Unix system系统中使用的一种著名hash算法,后来微软也在其hash_map中实现。
template<class T>
size_t FNVHash(const T* str)
{
if(!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return ;
register size_t hash = ;
while (size_t ch = (size_t)*str++)
{
hash *= ;
hash ^= ch;
}
return hash;
}
/// @brief DJB Hash Function
/// @detail 由Daniel J. Bernstein教授发明的一种hash算法。
template<class T>
size_t DJBHash(const T *str)
{
if(!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return ;
register size_t hash = ;
while (size_t ch = (size_t)*str++)
{
hash += (hash << ) + ch;
}
return hash;
}
/// @brief DJB Hash Function 2
/// @detail 由Daniel J. Bernstein 发明的另一种hash算法。
template<class T>
size_t DJB2Hash(const T *str)
{
if(!*str) // 这是由本人添加,以保证空字符串返回哈希值0
return ;
register size_t hash = ;
while (size_t ch = (size_t)*str++)
{
hash = hash * ^ ch;
}
return hash;
}
/// @brief PJW Hash Function
/// @detail 本算法是基于AT&T贝尔实验室的Peter J. Weinberger的论文而发明的一种hash算法。
template<class T>
size_t PJWHash(const T *str)
{
static const size_t TotalBits = sizeof(size_t) * ;
static const size_t ThreeQuarters = (TotalBits * ) / ;
static const size_t OneEighth = TotalBits / ;
static const size_t HighBits = ((size_t)-) << (TotalBits - OneEighth); register size_t hash = ;
size_t magic = ;
while (size_t ch = (size_t)*str++)
{
hash = (hash << OneEighth) + ch;
if ((magic = hash & HighBits) != )
{
hash = ((hash ^ (magic >> ThreeQuarters)) & (~HighBits));
}
}
return hash;
}
/// @brief ELF Hash Function
/// @detail 由于在Unix的Extended Library Function被附带而得名的一种hash算法,它其实就是PJW Hash的变形。
template<class T>
size_t ELFHash(const T *str)
{
static const size_t TotalBits = sizeof(size_t) * ;
static const size_t ThreeQuarters = (TotalBits * ) / ;
static const size_t OneEighth = TotalBits / ;
static const size_t HighBits = ((size_t)-) << (TotalBits - OneEighth);
register size_t hash = ;
size_t magic = ;
while (size_t ch = (size_t)*str++)
{
hash = (hash << OneEighth) + ch;
if ((magic = hash & HighBits) != )
{
hash ^= (magic >> ThreeQuarters);
hash &= ~magic;
}
}
return hash;
}
我对这些hash的散列质量及效率作了一个简单测试,测试结果如下:
测试1:对100000个由大小写字母与数字随机的ANSI字符串(无重复,每个字符串最大长度不超过64字符)进行散列:
| 字符串函数 | 冲突数 | 除1000003取余后的冲突数 |
|
BKDRHash |
0 | 4826 |
|
SDBMHash |
2 | 4814 |
|
RSHash |
2 | 4886 |
|
APHash |
0 | 4846 |
|
ELFHash |
1515 | 6120 |
|
JSHash |
779 | 5587 |
|
DEKHash |
863 | 5643 |
|
FNVHash |
2 | 4872 |
|
DJBHash |
832 | 5645 |
|
DJB2Hash |
695 | 5309 |
|
PJWHash |
1515 | 6120 |
测试2:对100000个由任意UNICODE组成随机字符串(无重复,每个字符串最大长度不超过64字符)进行散列:
| 字符串函数 | 冲突数 | 除1000003取余后的冲突数 |
|
BKDRHash |
3 | 4710 |
|
SDBMHash |
3 | 4904 |
|
RSHash |
3 | 4822 |
|
APHash |
2 | 4891 |
|
ELFHash |
16 | 4869 |
|
JSHash |
3 | 4812 |
|
DEKHash |
1 | 4755 |
|
FNVHash |
1 | 4803 |
|
DJBHash |
1 | 4749 |
|
DJB2Hash |
2 | 4817 |
|
PJWHash |
16 | 4869 |
测试3:对1000000个随机ANSI字符串(无重复,每个字符串最大长度不超过64字符)进行散列:
| 字符串函数 | 耗时(毫秒) |
|
BKDRHash |
109 |
|
SDBMHash |
109 |
|
RSHash |
124 |
|
APHash |
187 |
|
ELFHash |
249 |
|
JSHash |
172 |
|
DEKHash |
140 |
|
FNVHash |
125 |
|
DJBHash |
125 |
|
DJB2Hash |
125 |
|
PJWHash |
234 |
结论:也许是我的样本存在一些特殊性,在对ASCII码字符串进行散列时,PJW与ELF Hash(它们其实是同一种算法)无论是质量还是效率,都相当糟糕;例如:"b5"与“aE",这两个字符串按照PJW散列出来的hash值就是一样的。 另外,其它几种依靠异或来散列的哈希函数,如:JS/DEK/DJB Hash,在对字母与数字组成的字符串的散列效果也不怎么好。相对而言,还是BKDR与SDBM这类简单的Hash效率与效果更好。
其他:
作者:icefireelf
出处:http://blog.csdn.net/icefireelf/article/details/5796529
各种字符串Hash函数比较
常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法。这些函数使用位运算使得每一个字符都对最后的函数值产生 影响。另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎不可能找到碰撞。
常用字符串哈希函数有 BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等。对于以上几种哈 希函数,我对其进行了一个小小的评测。
| Hash函数 | 数据1 | 数据2 | 数据3 | 数据4 | 数据1得分 | 数据2得分 | 数据3得分 | 数据4得分 | 平均分 |
| BKDRHash | 2 | 0 | 4774 | 481 | 96.55 | 100 | 90.95 | 82.05 | 92.64 |
| APHash | 2 | 3 | 4754 | 493 | 96.55 | 88.46 | 100 | 51.28 | 86.28 |
| DJBHash | 2 | 2 | 4975 | 474 | 96.55 | 92.31 | 0 | 100 | 83.43 |
| JSHash | 1 | 4 | 4761 | 506 | 100 | 84.62 | 96.83 | 17.95 | 81.94 |
| RSHash | 1 | 0 | 4861 | 505 | 100 | 100 | 51.58 | 20.51 | 75.96 |
| SDBMHash | 3 | 2 | 4849 | 504 | 93.1 | 92.31 | 57.01 | 23.08 | 72.41 |
| PJWHash | 30 | 26 | 4878 | 513 | 0 | 0 | 43.89 | 0 | 21.95 |
| ELFHash | 30 | 26 | 4878 | 513 | 0 | 0 | 43.89 | 0 | 21.95 |
其中数据1为100000个字母和数字组成的随机串哈希冲突个数。数据2为100000个有意义的英文句子哈希冲突个数。数据3为数据1的哈希值与 1000003(大素数)求模后存储到线性表中冲突的个数。数据4为数据1的哈希值与10000019(更大素数)求模后存储到线性表中冲突的个数。
经过比较,得出以上平均得分。平均数为平方平均数。可以发现,BKDRHash无论是在实际效果还是编码实现中,效果都是最突出的。APHash也 是较为优秀的算法。DJBHash,JSHash,RSHash与SDBMHash各有千秋。PJWHash与ELFHash效果最差,但得分相似,其算 法本质是相似的。
unsigned int SDBMHash(char *str)
{
unsigned int hash = ; while (*str)
{
// equivalent to: hash = 65599*hash + (*str++);
hash = (*str++) + (hash << ) + (hash << ) - hash;
} return (hash & 0x7FFFFFFF);
} // RS Hash Function
unsigned int RSHash(char *str)
{
unsigned int b = ;
unsigned int a = ;
unsigned int hash = ; while (*str)
{
hash = hash * a + (*str++);
a *= b;
} return (hash & 0x7FFFFFFF);
} // JS Hash Function
unsigned int JSHash(char *str)
{
unsigned int hash = ; while (*str)
{
hash ^= ((hash << ) + (*str++) + (hash >> ));
} return (hash & 0x7FFFFFFF);
} // P. J. Weinberger Hash Function
unsigned int PJWHash(char *str)
{
unsigned int BitsInUnignedInt = (unsigned int)(sizeof(unsigned int) * );
unsigned int ThreeQuarters = (unsigned int)((BitsInUnignedInt * ) / );
unsigned int OneEighth = (unsigned int)(BitsInUnignedInt / );
unsigned int HighBits = (unsigned int)(0xFFFFFFFF) << (BitsInUnignedInt - OneEighth);
unsigned int hash = ;
unsigned int test = ; while (*str)
{
hash = (hash << OneEighth) + (*str++);
if ((test = hash & HighBits) != )
{
hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
}
} return (hash & 0x7FFFFFFF);
} // ELF Hash Function
unsigned int ELFHash(char *str)
{
unsigned int hash = ;
unsigned int x = ; while (*str)
{
hash = (hash << ) + (*str++);
if ((x = hash & 0xF0000000L) != )
{
hash ^= (x >> );
hash &= ~x;
}
} return (hash & 0x7FFFFFFF);
} // BKDR Hash Function
unsigned int BKDRHash(char *str)
{
unsigned int seed = ; // 31 131 1313 13131 131313 etc..
unsigned int hash = ; while (*str)
{
hash = hash * seed + (*str++);
} return (hash & 0x7FFFFFFF);
} // DJB Hash Function
unsigned int DJBHash(char *str)
{
unsigned int hash = ; while (*str)
{
hash += (hash << ) + (*str++);
} return (hash & 0x7FFFFFFF);
} // AP Hash Function
unsigned int APHash(char *str)
{
unsigned int hash = ;
int i; for (i=; *str; i++)
{
if ((i & ) == )
{
hash ^= ((hash << ) ^ (*str++) ^ (hash >> ));
}
else
{
hash ^= (~((hash << ) ^ (*str++) ^ (hash >> )));
}
} return (hash & 0x7FFFFFFF);
}
转自:http://www.byvoid.com/blog/string-hash-compare/
各种字符串Hash函数(转)的更多相关文章
- 各种字符串Hash函数比较(转)
常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些函数使用位运算使得每一个字符都对最后的函数值产生影响.另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎 ...
- 长度有限制的字符串hash函数
长度有限制的字符串hash函数 DJBHash是一种非常流行的算法,俗称"Times33"算法.Times33的算法很简单,就是不断的乘33,原型如下 hash(i) = hash ...
- [转]各种字符串Hash函数比较
转自:https://www.byvoid.com/zht/blog/string-hash-compare 常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些 ...
- 【转】各种字符串Hash函数比较
常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些函数使用位运算使得每一个字符都对最后的函数值产生影响.另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎 ...
- [T]各种字符串Hash函数比较
常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些函数使用位运算使得每一个字符都对最后的函数值产生影响.另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎 ...
- 各种字符串Hash函数比较
常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法.这些函数使用位运算使得每一个字符都对最后的函数值产生影响.另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎 ...
- 字符串hash函数
本文搜集了一些字符串的常用hash函数. 范例1:判断两个单词是否含有相同的字母,此时我们可以用hash做.例如,“aaabb”与"aabb"含有相同的单词.(参考:http:// ...
- hadoop Partiton中的字符串Hash函数改进
最近的MapReduce端的Partition根据map生成的Key来进行哈希,导致哈希出来的Reduce端处理任务数量非常不均匀,有些Reduce端处理的数据量非常小(几分钟就执行完成,而最后的pa ...
- 一些常用的字符串hash函数
unsigned int RSHash(const std::string& str) { unsigned int b = 378551; unsigned int a = 63689; u ...
随机推荐
- WDA演练一:用户登陆界面设计(二)
一,登陆界面设计: 1.将系统编号灰显,默认初值 2.密码栏勾选密码显示,这样就不会明文显示在页面上了: Init方法中添加默认值代码: METHOD wddoinit . DATA lo_nd_zh ...
- Httpd服务入门知识-Httpd服务常见配置案例之虚拟主机
Httpd服务入门知识-Httpd服务常见配置案例之虚拟主机 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.虚拟主机实现方案 1>.Apache httpd 有三种实现虚 ...
- flask通过nginx代理后base_url拿不到正确的url_scheme2016-04-14 12:31
http://www.axiaoxin.com/article/210/ Nginx配置了https请求后,用户发起https请求时首先和Nginx建立连接,完成SSL握手,而后Nginx作为代理是以 ...
- 汇编 JMP 详解
汇编 JMP 详解 关键词说明 RVA: 相对虚拟地址(Relative Virtual Address),在内存中相对于PE文件装入地址的偏移位置,是一个相对地址. JMP 的 3 种类型 短跳转( ...
- V-rep(1)
第一次课堂作业,需要导入网格三维模型,对齐坐标系,然后在各个关节添加jiont,实现外观模型和运动仿真模型的分离. 1.首先导入模型.导入模型可能是一个整体模型(装配好的),也可能是单个(mesh)网 ...
- String中intern方法的作用
前言 读完这篇文章你可以了解,String对象在虚拟机内存中的存放,intern的作用,这么多String对象的创建到底有什么区别,String 创建的对象有几个!! 正题 先科普几个知识点1.常量池 ...
- c# 调用 C++ dll 传入传出类型对应说明(转)
由于经常使用C#调用 非托管C++ dll 操作一下硬件,出现传入传出类型的问题,现整理了C++ dll 类型与 C#类型对应关系: //C++中的DLL函数原型为 //extern & ...
- 如何将wordpress的the_title()进行大小写处理
有时我们在做wordpress网站时需要将标题的大写字母改成小写字母或小写字母转为大写字母方便调用,那么要如何改造呢?我们知道Wordpress the_title()函数默认回显标题,标准写法是&l ...
- 类数组对象与arguments
类数组对象 所谓的类数组对象: 拥有一个 length 属性和若干索引属性的对象 举个例子: var array = ['name', 'age', 'sex']; var arrayLike = { ...
- JSE,JEE,JME三者之间有什么区别
JAVA是一种面向对象语言由SUN公司出品 J针对不同的使用方向规划出J2SE,J2EE,J2ME三个版本 J2SE 指标准版一般用于用户学习JAVA语言的基础也是使用其他两个版本的基础主要用于编写C ...