原文地址:

https://www.cnblogs.com/nlpowen/p/3620470.html

-----------------------------------------------------------------------------------------------

KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。其物理意义是:在相同事件空间里,概率分布P(x)对应的每个事件,若用概率分布 Q(x)编码时,平均每个基本事件(符号)编码长度增加了多少比特。我们用D(P||Q)表示KL距离,计算公式如下:

当两个概率分布完全相同时,即P(X)=Q(X),其相对熵为0 。我们知道,概率分布P(X)的信息熵为:

其表示,概率分布P(x)编码时,平均每个基本事件(符号)至少需要多少比特编码。通过信息熵的学习,我们知道不存在其他比按照本身概率分布更好的编码方式了,所以D(P||Q)始终大于等于0的。虽然KL被称为距离,但是其不满足距离定义的三个条件:1)非负性(满足);2)对称性(不满足);3)三角不等式 (不满足)。

我们以一个例子来说明,KL距离的含义。

假如一个字符发射器,随机发出0和1两种字符,真实发出概率分布为A,但实际不知道A的具体分布。现在通过观察,得到概率分布B与C。各个分布的具体情况如下:

A(0)=1/2,A(1)=1/2

B(0)=1/4,B(1)=3/4

C(0)=1/8,C(1)=7/8

那么,我们可以计算出得到如下:

也即,这两种方式来进行编码,其结果都使得平均编码长度增加了。我们也可以看出,按照概率分布B进行编码,要比按照C进行编码,平均每个符号增加的比特数目少。从分布上也可以看出,实际上B要比C更接近实际分布(因为其与A分布的KL距离更近)。

如果实际分布为C,而我们用A分布来编码这个字符发射器的每个字符,那么同样我们可以得到如下:

再次,我们进一步验证了这样的结论:对一个信息源编码,按照其本身的概率分布进行编码,每个字符的平均比特数目最少。这就是信息熵的概念,衡量了信息源本身的不确定性。另外,可以看出KL距离不满足对称性,即D(P||Q)不一定等于D(Q||P)。

当然,我们也可以验证KL距离不满足三角不等式条件。

上面的三个概率分布,D(B||C)=1/4log2+3/4log(6/7)。可以得到:D(A||C) - (D(A||B)+ D(B||C)) =1/2log2+1/4log(7/6)>0,这里验证了KL距离不满足三角不等式条件。所以KL距离,并不是一种距离度量方式,虽然它有这样的学名。

其实,KL距离在信息检索领域,以及统计自然语言方面有重要的运用。

-----------------------------------------------------------------------------------------------

【转载】 KL距离(相对熵)的更多相关文章

  1. (转载)KL距离,Kullback-Leibler Divergence

    转自:KL距离,Kullback-Leibler Divergence   KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对 ...

  2. KL距离(相对熵)

    KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy).它衡量的是相同事件空间里的两个概率分 ...

  3. KL距离,Kullback-Leibler Divergence

    http://www.cnblogs.com/ywl925/p/3554502.html http://www.cnblogs.com/hxsyl/p/4910218.html http://blog ...

  4. [NLP自然语言处理]计算熵和KL距离,java实现汉字和英文单词的识别,UTF8变长字符读取

    算法任务: 1. 给定一个文件,统计这个文件中所有字符的相对频率(相对频率就是这些字符出现的概率——该字符出现次数除以字符总个数,并计算该文件的熵). 2. 给定另外一个文件,按上述同样的方法计算字符 ...

  5. 最大熵与最大似然,以及KL距离。

    DNN中最常使用的离散数值优化目标,莫过于交差熵.两个分布p,q的交差熵,与KL距离实际上是同一回事. $-\sum plog(q)=D_{KL}(p\shortparallel q)-\sum pl ...

  6. 各种形式的熵函数,KL距离

    自信息量I(x)=-log(p(x)),其他依次类推. 离散变量x的熵H(x)=E(I(x))=-$\sum\limits_{x}{p(x)lnp(x)}$ 连续变量x的微分熵H(x)=E(I(x)) ...

  7. [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...

  8. 信息熵 Information Theory

    信息论(Information Theory)是概率论与数理统计的一个分枝.用于信息处理.信息熵.通信系统.数据传输.率失真理论.密码学.信噪比.数据压缩和相关课题.本文主要罗列一些基于熵的概念及其意 ...

  9. IQA(图像质量评估)

    图像质量评价(Image Quality Assessment,IQA)是图像处理中的基本技术之一,主要通过对图像进行特性分析研究,然后评估出图像优劣(图像失真程度). 主要的目的是使用合适的评价指标 ...

随机推荐

  1. 【转】解决maven无法加载本地lib/下的jar包问题(程序包XXX不存在)

    原文链接:https://www.cnblogs.com/adeng/p/7096484.html 这次一个项目用到maven编译,我在本地开发的时候jar包都是放在WEB-INF/lib目录下,通过 ...

  2. 个性化排序算法实践(五)——DCN算法

    wide&deep在个性化排序算法中是影响力比较大的工作了.wide部分是手动特征交叉(负责memorization),deep部分利用mlp来实现高阶特征交叉(负责generalizatio ...

  3. 详解C++中基类与派生类的转换以及虚基类

    很详细!转载链接 C++基类与派生类的转换在公用继承.私有继承和保护继承中,只有公用继承能较好地保留基类的特征,它保留了除构造函数和析构函数以外的基类所有成员,基类的公用或保护成员的访问权限在派生类中 ...

  4. Linux系统 安装JDK和tomcat

    下载文件路径包: http://archive.apache.org/dist/ 首先将软件包上传到/tmp目录下 需要文件如下 jdk-8u60-linux-x64.gz apache-tomcat ...

  5. 题解 UVa10780

    题目大意 多组数据,每组数据给定两个整数 \(m,n\),输出使 \(n\%m^k=0\) 的最大的 \(k\).如果 \(k=0\) 则输出Impossible to divide. 分析 计数水题 ...

  6. 《S》读后感

    利用周末时间读完了<S>,有一幅画面在脑袋里挥之不去:一条急湍直下的河,岸边茂密的枝叶延伸到河面上,很多人被河水冲向前方,每个人的眼里都夹杂着凄凉与愤怒,时不时回头,,想同这河水做一次歇斯 ...

  7. 集合(Collection)类

    集合(Collection)类是专门用于数据存储和检索的类.这些类提供了对栈(stack).队列(queue).列表(list)和哈希表(hash table)的支持.大多数集合类实现了相同的接口. ...

  8. MongoDB 复制集监控

    1.复制集状态查询:rs.status() 2.查看当前副本集oplog状态:rs.printReplicationInfo() 3.查看复制延迟:rs.printSlaveReplicationIn ...

  9. ERROR: `elasticsearch` directory is missing in the plugin zip

    该问题出现在为elasticsearch安装中文分词器插件时 问题发生在插件和es版本不匹配~ 解决: es版本与插件版本对应齐 命令行安装 C:\Users\SeeClanUkyo>F:\el ...

  10. Linux环境下面安装Perl环境

    1.下载安装 wget http://www.cpan.org/src/5.0/perl-5.26.1.tar.gz tar zxvf perl-5.26.1.tar.gz cd perl-5.26. ...