http://software.broadinstitute.org/gsea/index.jsp

GSEA(Gene Set Enrichment Analysis)是一种生物信息学的计算方法,用于确定是否存在这样一个基因集,能在两个生物学状态中显示出显著的一致性的差异。表达谱数据里的基因数目众多,我们需要对基因进行功能注释,看哪些基因属于同一通路,以及该通路上的上调、下调情况,这就是富集分析了。

例如2019年4月在Cancer cell(PMID 30991027)上发表的一篇文章中有一张主图,就是通过GSEA分析对RNA-seq的数据进行解读,如下

在上图中,图A是经典的GSEA富集图,图B为GSEA得到的通路上调或下调的韦恩图,图C和图D是GSEA分析的NES值,图E是GSEA通路基因表达值。

也就是说,只需要2(实验条件) X 3(生物学重复)个RNA-seq的样本,我们就可以做出上图。

做转录组分析时,大家通常会先筛选差异表达基因,然后再对这些差异表达基因进行功能富集分析。可能不少小伙伴会发现这种情况,就是因为差异基因过少而富集目标/相关的功能/通路,或者差异表达基因虽然很多,但是没有命中到感兴趣的通路或者GO功能。这种先做差异基因筛选的方式,可能由于筛选参数的设置不同,导致一些关键信息的“漏网”。

这种情况下,就可以试试GSEA分析。GSEA无需先做差异分析,会保留更多更多更全面的关键信息。可以帮助我们找到那些差异不是很明显但基因差异趋势很一致的功能基因集。

当然这两种思路没有说哪个更好,实际应用中能解决问题即可。

GSEA的分析步骤

1. GSEA软件的下载

直接通过GSEA官网进行下载

http://software.broadinstitute.org/gsea/index.jsp

2. 准备GSEA的输入文件

GSEA的输入文件有两个,分别是gct文件和cls文件。

表达谱数据文件格式如下

数据共7列,第一列为基因名,第二至七列为样本表达,分别是三个Case和三个Control

gct文件中包含表达谱数据

cls文件中包含数据比对条件

 3. 运行GSEA

最终生成的结果,就是我们Case和Control两组样本相比,差异通路的结果,比如所有通路上调或者下调的情况。

或者单独通路的经典GSEA富集图

GSEA 基因集富集分析的更多相关文章

  1. GSEA - Gene set enrichment analysis 基因集富集 | ORA - Over-Representation Analysis 分析原理与应用

    RNA-seq是利器,大部分做实验的老板手下都有大量转录组数据,所以RNA-seq的分析需求应该是很大的(大部分的生信从业人员应该都差不多要沾边吧). 普通的转录组套路并不多,差异表达基因.富集分析. ...

  2. 【R】clusterProfiler的GO/KEGG富集分析用法小结

    前言 关于clusterProfiler这个R包就不介绍了,网红教授宣传得很成功,功能也比较强大,主要是做GO和KEGG的功能富集及其可视化.简单总结下用法,以后用时可直接找来用. 首先考虑一个问题: ...

  3. GO 和 KEGG 的区别 | GO KEGG数据库用法 | 基因集功能注释 | 代谢通路富集

    一直都搞不清楚这两者的具体区别. 其实初学者搞不清楚很正常,因为它们的本质是相通的,都是对基因进行归类注释的数据库. 建议初学者自己使用一下这两个数据库,应该很快就能明白其中的区别. (抱歉之前没讲清 ...

  4. GO富集分析

    GO的主要用途之一是对基因组进行富集分析.例如,给定一组在特定条件下上调的基因,富集分析将使用该基因组的注释发现哪些GO术语被过度表示(或未充分表示). 富集分析工具    用户可以直接从GOC网站的 ...

  5. 利用GSEA对基因表达数据做富集分析

      image Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a p ...

  6. 基因探针富集分析(GSEA)& GO & pathway

    http://blog.sina.com.cn/s/blog_4c1f21000100utyx.html GO是Gene Ontology的简称,是生物学家为了衡量基因的功能而而发起的一个项目,从分子 ...

  7. R: 修改镜像、bioconductor安装及go基因富集分析

    1.安装bioconductor及go分析涉及的相关包 source("http://bioconductor.org/biocLite.R") options(BioC_mirr ...

  8. DEPICT实现基因优化(gene prioritization)、gene set富集分析(geneset enrichment)、组织富集分析(tissue enrichment)

    全基因组关联分析除了找到显著的关联位点,我们还可以做基因优化.geneset富集分析.组织富集分析,下面具体讲一讲怎么利用GWAS的summary数据做这个分析. summary数据就是关联分析的结果 ...

  9. OS Tools-GO富集分析工具的使用与解读详细教程

    我们的云平台上的GO富集分析工具,需要输入的文件表格和参数很简单,但很多同学都不明白其中的原理与结果解读,这个帖子就跟大家详细解释~ 一.GO富集介绍:       Gene Ontology(简称G ...

随机推荐

  1. SpringCloud高并发性能优化

    1. SpringCloud高并发性能优化 1.1. 前言 当系统的用户量上来,每秒QPS上千后,可能就会导致系统的各种卡顿,超时等情况,这时优化操作不可避免 1.2. 优化步骤 第一步:优化大SQL ...

  2. javascript:void(0)的含义

    void关键字介绍 首先,void关键字是javascript当中非常重要的关键字,该操作符指定要计算或运行一个表达式,但是不返回值. 语法格式: void func() void(func()) 实 ...

  3. [TensorFlow 2.0] Keras 简介

    Keras 是一个用于构建和训练深度学习模型的高阶 API.它可用于快速设计原型.高级研究和生产. keras的3个优点: 方便用户使用.模块化和可组合.易于扩展 简单点说就是,简单.好用.快(构建) ...

  4. idea 把 springboot 项目打包成 jar

    在maven项目中,查看是否有maven的插件,无则添加配置maven插件: <build> <plugins> <plugin> <groupId>o ...

  5. flask ajax发送请求返回400

    在flaskWTF使用csrf保护后,一般提交form表单都需要一个隐藏的csrf 这样可以成功提交,但是使用ajax提交时就不能成功提交,会返回400错误,服务器无法理解请求,这样就需要新的方法解决 ...

  6. eclipse 小提示

    1.模糊提示插件 Code Recommenders alt+/ 模糊提示插件 Code Recommenders

  7. Httpd服务入门知识-使用mod_deflate模块压缩页面优化传输速度

    Httpd服务入门知识-使用mod_deflate模块压缩页面优化传输速度 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.mod_deflate模块概述 mod_deflate ...

  8. 100% 成功率的 offer 收割机是怎样练成的?

    都说今年的形势不好,各种找工作不顺利,但我身边就有一位同学,每次面试都拿到offer,我特意邀请他来给大家分享下经验,虽然不同人的技术领域未必相同,但很多东西是相通的,希望本文能对大家有所帮助. 下面 ...

  9. 逆向破解之160个CrackMe —— 019

    CrackMe —— 019 160 CrackMe 是比较适合新手学习逆向破解的CrackMe的一个集合一共160个待逆向破解的程序 CrackMe:它们都是一些公开给别人尝试破解的小程序,制作 c ...

  10. OAuth 第三方登录授权码(authorization code)方式的小例子

    假如上面的网站A,可以通过GitHub账号登录: 下面以OAuth其中一种方式,授权码(authorization code)方式为例. 一.第三方登录的原理 所谓第三方登录,实质就是 OAuth 授 ...