pandas.DataFrame对象类型解析

df = pd.DataFrame([[1,"2",3,4],[5,"6",7,8]],columns=["a","b","c","d"])

method解析

1、add()方法:类似加法运算(相加的元素必须是同一对象的数据)

 |  add(self, other, axis='columns', level=None, fill_value=None)
| Addition of dataframe and other, element-wise (binary operator `add`).
|
| Equivalent to ``dataframe + other``, but with support to substitute a fill_value for
| missing data in one of the inputs.
|
| Parameters
| ----------
| other : Series, DataFrame, or constant
| axis : {0, 1, 'index', 'columns'}
| For Series input, axis to match Series index on
| level : int or name
| Broadcast across a level, matching Index values on the
| passed MultiIndex level
| fill_value : None or float value, default None
| Fill existing missing (NaN) values, and any new element needed for
| successful DataFrame alignment, with this value before computation.
| If data in both corresponding DataFrame locations is missing
| the result will be missing

pandas.DataFrame.add方法

example:

output:

2、aggregate()方法:可简写agg()方法

aggregate(self, func, axis=0, *args, **kwargs)
| Aggregate using one or more operations over the specified axis.
|
| .. versionadded:: 0.20.0
|
| Parameters
| ----------
| func : function, string, dictionary, or list of string/functions
| Function to use for aggregating the data. If a function, must either
| work when passed a DataFrame or when passed to DataFrame.apply. For
| a DataFrame, can pass a dict, if the keys are DataFrame column names.
|
| Accepted combinations are:
|
| - string function name.
| - function.
| - list of functions.
| - dict of column names -> functions (or list of functions).

pandas.DataFrame.aggregate方法

example:

#coding=utf-8
import pandas as pd
import numpy as np ds = pd.Series([11,"",13,14])
print ds,"\n" df = pd.DataFrame([[1,"",3,4],[5,"",7,8]],columns=["a","b","c","d"])
print df,"\n" print(df.agg(['sum', 'min']))
print(df.agg({"a":['sum', 'min']}))

output:

0    11
1 2
2 13
3 14
dtype: object a b c d
0 1 2 3 4
1 5 6 7 8 a b c d
sum 6 26 10 12
min 1 2 3 4
a
sum 6
min 1

常用的aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,`var`)

mad(self, axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis
max(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the maximum of the values in the object.If you want the *index* of the maximum, use ``idxmax``. This is the equivalent of the ``numpy.ndarray`` method ``argmax``.
mean(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis
median(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis
min(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the minimum of the values in the object. memory_usage(self, index=True, deep=False)
Return the memory usage of each column in bytes.
merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
Merge DataFrame objects by performing a database-style join operation by columns or indexes.
align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None):
Align two objects on their axes with the specified join method for each axis Index
all(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs):
Return whether all elements are True over series or dataframe axis.
any(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs):
Return whether any element is True over requested axis.
apply(self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds):
Apply a function along an axis of the DataFrame.
applymap(self, func):
Apply a function to a Dataframe elementwise.This method applies a function that accepts and returns a scalarto every element of a DataFrame.
append(self, other, ignore_index=False, verify_integrity=False, sort=None):
Append rows of `other` to the end of this frame, returning a new object. Columns not in this frame are added as new columns.
assign(self, **kwargs):
Assign new columns to a DataFrame, returning a new object(a copy) with the new columns added to the original ones.Existing columns that are re-assigned will be overwritten.
insert(self, loc, column, value, allow_duplicates=False)
Insert column into DataFrame at specified location. combine(self, other, func, fill_value=None, overwrite=True):
Add two DataFrame objects and do not propagate NaN values, so if for a(column, time) one frame is missing a value, it will default to theother frame's value (which might be NaN as well)
count(self, axis=0, level=None, numeric_only=False):
Count non-NA cells for each column or row.
cov(self, min_periods=None):
Compute pairwise covariance of columns, excluding NA/null values.
drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise'):
Drop specified labels from rows or columns.
drop_duplicates(self, subset=None, keep='first', inplace=False):
Return DataFrame with duplicate rows removed, optionally onlyconsidering certain columns
dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False)
Remove missing values.
duplicated(self, subset=None, keep='first')
Return boolean Series denoting duplicate rows, optionally onlyconsidering certain columns
eq(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods eq
eval(self, expr, inplace=False, **kwargs)
Evaluate a string describing operations on DataFrame columns.
fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
Fill NA/NaN values using the specified method
ge(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods ge
gt(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods gt
le(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods le
lt(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods lt get_value(self, index, col, takeable=False)
Quickly retrieve single value at passed column and index
info(self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)
Print a concise summary of a DataFrame.
isin(self, values)
Return boolean DataFrame showing whether each element in theDataFrame is contained in values.
isna(self)
Detect missing values.Return a boolean same-sized object indicating if the values are NA.
isnull(self)
Detect missing values.Return a boolean same-sized object indicating if the values are NA.
iteritems(self)
Iterator over (column name, Series) pairs.
iterrows(self)
Iterate over DataFrame rows as (index, Series) pairs.
itertuples(self, index=True, name='Pandas')
Iterate over DataFrame rows as namedtuples, with index value as firstelement of the tuple.
join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False)
Join columns with other DataFrame either on index or on a keycolumn. Efficiently Join multiple DataFrame objects by index at once bypassing a list.

pandas.DataFrame对象解析的更多相关文章

  1. [Pandas技巧] 如何把pandas dataframe对象或series对象转换成list

    import pandas as pd >>> df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9], 'b':[3,5,6,2,4,6,7, ...

  2. 重拾Python(4):Pandas之DataFrame对象的使用

    Pandas有两大数据结构:Series和DataFrame,之前已对Series对象进行了介绍(链接),本文主要对DataFrame对象的常用用法进行总结梳理. 约定: import pandas ...

  3. 将pandas的Dataframe对象读写Excel文件

    Dataframe对象生成Excel文件 需要xlrd库  命令  pip install xlrd #导入pandas import pandas as pd import numpy as np ...

  4. pandas中DataFrame对象to_csv()方法中的encoding参数

    当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的enco ...

  5. pandas.DataFrame学习系列1——定义及属性

    定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是panda ...

  6. pandas DataFrame apply()函数(1)

    之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 app ...

  7. python数据类型之pandas—DataFrame

    DataFrame定义: DataFrame是pandas的两个主要数据结构之一,另一个是Series —一个表格型的数据结构 —含有一组有序的列 —大致可看成共享同一个index的Series集合 ...

  8. 【338】Pandas.DataFrame

    Ref: Pandas Tutorial: DataFrames in Python Ref: pandas.DataFrame Ref: Pandas:DataFrame对象的基础操作 Ref: C ...

  9. pandas dataframe在指定的位置添加一列, 或者一次性添加几列,re

    相信有很多人收这个问题的困扰,如果你想一次性在pandas.DataFrame里添加几列,或者在指定的位置添加一列,都会很苦恼找不到简便的方法:可以用到的函数有df.reindex, pd.conca ...

随机推荐

  1. bg/fg

    将一个在后台暂停的命令,变成继续执行 (在后台执行). 一般ctrl+z就把前台命令调到了后台 将后台中的命令调至前台继续运行

  2. ARC093F Dark Horse 【容斥,状压dp】

    题目链接:gfoj 神仙计数题. 可以转化为求\(p_1,p_2,\ldots,p_{2^n}\),使得\(b_i=\min\limits_{j=2^i+1}^{2^{i+1}}p_j\)都不属于\( ...

  3. 原创:logistic regression实战(一):SGD Without lasso

    logistic regression是分类算法中非常重要的算法,也是非常基础的算法.logistic regression从整体上考虑样本预测的精度,用判别学习模型的条件似然进行参数估计,假设样本遵 ...

  4. sprintf格式化字符串漏洞(转)

    深入解析sprintf格式化字符串漏洞 特征: 如何利用: 可以看到, php源码中只对15种类型做了匹配, 其他字符类型都直接break了,php未做任何处理,直接跳过,所以导致了这个问题: 没做字 ...

  5. EF join

    两张表: var query = db.Categories // 第一张表 .Join(db.CategoryMaps, // 第二张表 c => c.CategoryId, // 主键 cm ...

  6. 【CNN】--- 卷积过程中RGB与灰度的区别

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/hacker_Dem_br/article/ ...

  7. Java多线程的Callable, Future, FutureCallback

    Callable可以看成是一个增强版的Runnable, 带返回结果, 需要通过Future或者FutureTask来提交任务或运行线程, 然后通过Future/FutureTask的get方法得到返 ...

  8. Python | Pipenv官方推荐的python包管理工具

    原文地址:https://cloud.tencent.com/developer/article/1355672 Pipenv - 官方推荐的的python包管理工具. Pipenv是一款旨在将所有包 ...

  9. XNOR-Net:二值化卷积神经网络

    https://www.jianshu.com/p/f9b015cc4514 https://github.com/hpi-xnor/BMXNet  BMXNet:基于MXNet的开源二值神经网络实现 ...

  10. openresty开发系列30--openresty中使用全局缓存

    openresty开发系列30--openresty中使用全局缓存 Nginx全局内存---本地缓存 使用过如Java的朋友可能知道如Ehcache等这种进程内本地缓存.Nginx是一个Master进 ...