pandas.DataFrame对象解析
pandas.DataFrame对象类型解析
df = pd.DataFrame([[1,"2",3,4],[5,"6",7,8]],columns=["a","b","c","d"])
method解析
1、add()方法:类似加法运算(相加的元素必须是同一对象的数据)
| add(self, other, axis='columns', level=None, fill_value=None)
| Addition of dataframe and other, element-wise (binary operator `add`).
|
| Equivalent to ``dataframe + other``, but with support to substitute a fill_value for
| missing data in one of the inputs.
|
| Parameters
| ----------
| other : Series, DataFrame, or constant
| axis : {0, 1, 'index', 'columns'}
| For Series input, axis to match Series index on
| level : int or name
| Broadcast across a level, matching Index values on the
| passed MultiIndex level
| fill_value : None or float value, default None
| Fill existing missing (NaN) values, and any new element needed for
| successful DataFrame alignment, with this value before computation.
| If data in both corresponding DataFrame locations is missing
| the result will be missing
pandas.DataFrame.add方法
example:
output:
2、aggregate()方法:可简写agg()方法
aggregate(self, func, axis=0, *args, **kwargs)
| Aggregate using one or more operations over the specified axis.
|
| .. versionadded:: 0.20.0
|
| Parameters
| ----------
| func : function, string, dictionary, or list of string/functions
| Function to use for aggregating the data. If a function, must either
| work when passed a DataFrame or when passed to DataFrame.apply. For
| a DataFrame, can pass a dict, if the keys are DataFrame column names.
|
| Accepted combinations are:
|
| - string function name.
| - function.
| - list of functions.
| - dict of column names -> functions (or list of functions).
pandas.DataFrame.aggregate方法
example:
#coding=utf-8
import pandas as pd
import numpy as np ds = pd.Series([11,"",13,14])
print ds,"\n" df = pd.DataFrame([[1,"",3,4],[5,"",7,8]],columns=["a","b","c","d"])
print df,"\n" print(df.agg(['sum', 'min']))
print(df.agg({"a":['sum', 'min']}))
output:
0 11
1 2
2 13
3 14
dtype: object a b c d
0 1 2 3 4
1 5 6 7 8 a b c d
sum 6 26 10 12
min 1 2 3 4
a
sum 6
min 1
常用的aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,`var`)
mad(self, axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis
max(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the maximum of the values in the object.If you want the *index* of the maximum, use ``idxmax``. This is the equivalent of the ``numpy.ndarray`` method ``argmax``.
mean(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis
median(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis
min(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the minimum of the values in the object. memory_usage(self, index=True, deep=False)
Return the memory usage of each column in bytes.
merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
Merge DataFrame objects by performing a database-style join operation by columns or indexes.
align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None):
Align two objects on their axes with the specified join method for each axis Index
all(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs):
Return whether all elements are True over series or dataframe axis.
any(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs):
Return whether any element is True over requested axis.
apply(self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds):
Apply a function along an axis of the DataFrame.
applymap(self, func):
Apply a function to a Dataframe elementwise.This method applies a function that accepts and returns a scalarto every element of a DataFrame.
append(self, other, ignore_index=False, verify_integrity=False, sort=None):
Append rows of `other` to the end of this frame, returning a new object. Columns not in this frame are added as new columns.
assign(self, **kwargs):
Assign new columns to a DataFrame, returning a new object(a copy) with the new columns added to the original ones.Existing columns that are re-assigned will be overwritten.
insert(self, loc, column, value, allow_duplicates=False)
Insert column into DataFrame at specified location. combine(self, other, func, fill_value=None, overwrite=True):
Add two DataFrame objects and do not propagate NaN values, so if for a(column, time) one frame is missing a value, it will default to theother frame's value (which might be NaN as well)
count(self, axis=0, level=None, numeric_only=False):
Count non-NA cells for each column or row.
cov(self, min_periods=None):
Compute pairwise covariance of columns, excluding NA/null values.
drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise'):
Drop specified labels from rows or columns.
drop_duplicates(self, subset=None, keep='first', inplace=False):
Return DataFrame with duplicate rows removed, optionally onlyconsidering certain columns
dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False)
Remove missing values.
duplicated(self, subset=None, keep='first')
Return boolean Series denoting duplicate rows, optionally onlyconsidering certain columns
eq(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods eq
eval(self, expr, inplace=False, **kwargs)
Evaluate a string describing operations on DataFrame columns.
fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
Fill NA/NaN values using the specified method
ge(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods ge
gt(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods gt
le(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods le
lt(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods lt get_value(self, index, col, takeable=False)
Quickly retrieve single value at passed column and index
info(self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)
Print a concise summary of a DataFrame.
isin(self, values)
Return boolean DataFrame showing whether each element in theDataFrame is contained in values.
isna(self)
Detect missing values.Return a boolean same-sized object indicating if the values are NA.
isnull(self)
Detect missing values.Return a boolean same-sized object indicating if the values are NA.
iteritems(self)
Iterator over (column name, Series) pairs.
iterrows(self)
Iterate over DataFrame rows as (index, Series) pairs.
itertuples(self, index=True, name='Pandas')
Iterate over DataFrame rows as namedtuples, with index value as firstelement of the tuple.
join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False)
Join columns with other DataFrame either on index or on a keycolumn. Efficiently Join multiple DataFrame objects by index at once bypassing a list.
pandas.DataFrame对象解析的更多相关文章
- [Pandas技巧] 如何把pandas dataframe对象或series对象转换成list
import pandas as pd >>> df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9], 'b':[3,5,6,2,4,6,7, ...
- 重拾Python(4):Pandas之DataFrame对象的使用
Pandas有两大数据结构:Series和DataFrame,之前已对Series对象进行了介绍(链接),本文主要对DataFrame对象的常用用法进行总结梳理. 约定: import pandas ...
- 将pandas的Dataframe对象读写Excel文件
Dataframe对象生成Excel文件 需要xlrd库 命令 pip install xlrd #导入pandas import pandas as pd import numpy as np ...
- pandas中DataFrame对象to_csv()方法中的encoding参数
当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的enco ...
- pandas.DataFrame学习系列1——定义及属性
定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是panda ...
- pandas DataFrame apply()函数(1)
之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 app ...
- python数据类型之pandas—DataFrame
DataFrame定义: DataFrame是pandas的两个主要数据结构之一,另一个是Series —一个表格型的数据结构 —含有一组有序的列 —大致可看成共享同一个index的Series集合 ...
- 【338】Pandas.DataFrame
Ref: Pandas Tutorial: DataFrames in Python Ref: pandas.DataFrame Ref: Pandas:DataFrame对象的基础操作 Ref: C ...
- pandas dataframe在指定的位置添加一列, 或者一次性添加几列,re
相信有很多人收这个问题的困扰,如果你想一次性在pandas.DataFrame里添加几列,或者在指定的位置添加一列,都会很苦恼找不到简便的方法:可以用到的函数有df.reindex, pd.conca ...
随机推荐
- 抓取Dump文件的方法和工具介绍
一.Windows系统的任务管理器里抓dump 启动任务管理器,选中某个进程,右键,弹出菜单"创建转储文件" 注意事项: 当你在64位Windows系统上抓32位进程的dmup文件 ...
- 钟长者P71解题报告
T1 [题目描述] 给你N个字符串,你每次可以选择其中一个字符串的一段前缀进行翻转,但是你必须保证这个前缀的长度是偶数.你可以进行无限次这样的操作,并且如果两个字符串变得相同的时候,你就可以把这两个字 ...
- 【cf contest 1119 G】Get Ready for the Battle
题目 你有\(n\)个士兵,需要将他们分成\(m\)组,每组可以为0: 现在这些士兵要去攻打\(m\)个敌人,每个敌人的生命值为\(hp_i\) : 一轮游戏中一组士兵选定一个攻打的敌人,敌人生命值- ...
- mysql .字符串转日期
insert into share (uid, mapId, isdir, type, pwd, shareTime, overTime, price) values (1, 10, 0, 1,&qu ...
- 【BZOJ 1036】 树的统计count
题目 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: ...
- 第10组alpha冲刺(2/4)
队名:凹凸曼 组长博客 作业博客 组员实践情况 童景霖 过去两天完成了哪些任务 文字/口头描述 继续学习Android studio和Java 完善项目APP原型 展示GitHub当日代码/文档签入记 ...
- windows 共享文件夹
windows 共享文件夹 同步工作组 右键单击"计算机",选择"属性" 更改设置 单击"更改". 输入工作组 和 主机名 启计算机使更改生 ...
- TypeScript之Https通信
NetWorkRequest.ts(源代码如下) import * as https from "https"; import * as vscode from 'vscode'; ...
- jmeter元件作用及执行顺序
jmeter是一个开源的性能测试工具,它可以通过鼠标拖拽来随意改变元件之间的顺序以及元件的父子关系,那么随着它们的顺序和所在的域不同,它们在执行的时候,也会有很多不同. jmeter的test pla ...
- winrunner 测试工具
WinRunner在项目中的作用 (winrunner测试设计:http://blog.chinaunix.net/uid/301743/year-2013-list-81.html?/178 ...