pandas.DataFrame对象解析
pandas.DataFrame对象类型解析
df = pd.DataFrame([[1,"2",3,4],[5,"6",7,8]],columns=["a","b","c","d"])
method解析
1、add()方法:类似加法运算(相加的元素必须是同一对象的数据)
| add(self, other, axis='columns', level=None, fill_value=None)
| Addition of dataframe and other, element-wise (binary operator `add`).
|
| Equivalent to ``dataframe + other``, but with support to substitute a fill_value for
| missing data in one of the inputs.
|
| Parameters
| ----------
| other : Series, DataFrame, or constant
| axis : {0, 1, 'index', 'columns'}
| For Series input, axis to match Series index on
| level : int or name
| Broadcast across a level, matching Index values on the
| passed MultiIndex level
| fill_value : None or float value, default None
| Fill existing missing (NaN) values, and any new element needed for
| successful DataFrame alignment, with this value before computation.
| If data in both corresponding DataFrame locations is missing
| the result will be missing
pandas.DataFrame.add方法
example:
output:
2、aggregate()方法:可简写agg()方法
aggregate(self, func, axis=0, *args, **kwargs)
| Aggregate using one or more operations over the specified axis.
|
| .. versionadded:: 0.20.0
|
| Parameters
| ----------
| func : function, string, dictionary, or list of string/functions
| Function to use for aggregating the data. If a function, must either
| work when passed a DataFrame or when passed to DataFrame.apply. For
| a DataFrame, can pass a dict, if the keys are DataFrame column names.
|
| Accepted combinations are:
|
| - string function name.
| - function.
| - list of functions.
| - dict of column names -> functions (or list of functions).
pandas.DataFrame.aggregate方法
example:
#coding=utf-8
import pandas as pd
import numpy as np ds = pd.Series([11,"",13,14])
print ds,"\n" df = pd.DataFrame([[1,"",3,4],[5,"",7,8]],columns=["a","b","c","d"])
print df,"\n" print(df.agg(['sum', 'min']))
print(df.agg({"a":['sum', 'min']}))
output:
0 11
1 2
2 13
3 14
dtype: object a b c d
0 1 2 3 4
1 5 6 7 8 a b c d
sum 6 26 10 12
min 1 2 3 4
a
sum 6
min 1
常用的aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,`var`)
mad(self, axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis
max(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the maximum of the values in the object.If you want the *index* of the maximum, use ``idxmax``. This is the equivalent of the ``numpy.ndarray`` method ``argmax``.
mean(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis
median(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis
min(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the minimum of the values in the object. memory_usage(self, index=True, deep=False)
Return the memory usage of each column in bytes.
merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
Merge DataFrame objects by performing a database-style join operation by columns or indexes.
align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None):
Align two objects on their axes with the specified join method for each axis Index
all(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs):
Return whether all elements are True over series or dataframe axis.
any(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs):
Return whether any element is True over requested axis.
apply(self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds):
Apply a function along an axis of the DataFrame.
applymap(self, func):
Apply a function to a Dataframe elementwise.This method applies a function that accepts and returns a scalarto every element of a DataFrame.
append(self, other, ignore_index=False, verify_integrity=False, sort=None):
Append rows of `other` to the end of this frame, returning a new object. Columns not in this frame are added as new columns.
assign(self, **kwargs):
Assign new columns to a DataFrame, returning a new object(a copy) with the new columns added to the original ones.Existing columns that are re-assigned will be overwritten.
insert(self, loc, column, value, allow_duplicates=False)
Insert column into DataFrame at specified location. combine(self, other, func, fill_value=None, overwrite=True):
Add two DataFrame objects and do not propagate NaN values, so if for a(column, time) one frame is missing a value, it will default to theother frame's value (which might be NaN as well)
count(self, axis=0, level=None, numeric_only=False):
Count non-NA cells for each column or row.
cov(self, min_periods=None):
Compute pairwise covariance of columns, excluding NA/null values.
drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise'):
Drop specified labels from rows or columns.
drop_duplicates(self, subset=None, keep='first', inplace=False):
Return DataFrame with duplicate rows removed, optionally onlyconsidering certain columns
dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False)
Remove missing values.
duplicated(self, subset=None, keep='first')
Return boolean Series denoting duplicate rows, optionally onlyconsidering certain columns
eq(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods eq
eval(self, expr, inplace=False, **kwargs)
Evaluate a string describing operations on DataFrame columns.
fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
Fill NA/NaN values using the specified method
ge(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods ge
gt(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods gt
le(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods le
lt(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods lt get_value(self, index, col, takeable=False)
Quickly retrieve single value at passed column and index
info(self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)
Print a concise summary of a DataFrame.
isin(self, values)
Return boolean DataFrame showing whether each element in theDataFrame is contained in values.
isna(self)
Detect missing values.Return a boolean same-sized object indicating if the values are NA.
isnull(self)
Detect missing values.Return a boolean same-sized object indicating if the values are NA.
iteritems(self)
Iterator over (column name, Series) pairs.
iterrows(self)
Iterate over DataFrame rows as (index, Series) pairs.
itertuples(self, index=True, name='Pandas')
Iterate over DataFrame rows as namedtuples, with index value as firstelement of the tuple.
join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False)
Join columns with other DataFrame either on index or on a keycolumn. Efficiently Join multiple DataFrame objects by index at once bypassing a list.
pandas.DataFrame对象解析的更多相关文章
- [Pandas技巧] 如何把pandas dataframe对象或series对象转换成list
import pandas as pd >>> df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9], 'b':[3,5,6,2,4,6,7, ...
- 重拾Python(4):Pandas之DataFrame对象的使用
Pandas有两大数据结构:Series和DataFrame,之前已对Series对象进行了介绍(链接),本文主要对DataFrame对象的常用用法进行总结梳理. 约定: import pandas ...
- 将pandas的Dataframe对象读写Excel文件
Dataframe对象生成Excel文件 需要xlrd库 命令 pip install xlrd #导入pandas import pandas as pd import numpy as np ...
- pandas中DataFrame对象to_csv()方法中的encoding参数
当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的enco ...
- pandas.DataFrame学习系列1——定义及属性
定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是panda ...
- pandas DataFrame apply()函数(1)
之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 app ...
- python数据类型之pandas—DataFrame
DataFrame定义: DataFrame是pandas的两个主要数据结构之一,另一个是Series —一个表格型的数据结构 —含有一组有序的列 —大致可看成共享同一个index的Series集合 ...
- 【338】Pandas.DataFrame
Ref: Pandas Tutorial: DataFrames in Python Ref: pandas.DataFrame Ref: Pandas:DataFrame对象的基础操作 Ref: C ...
- pandas dataframe在指定的位置添加一列, 或者一次性添加几列,re
相信有很多人收这个问题的困扰,如果你想一次性在pandas.DataFrame里添加几列,或者在指定的位置添加一列,都会很苦恼找不到简便的方法:可以用到的函数有df.reindex, pd.conca ...
随机推荐
- BZOJ 3672: [Noi2014]购票 树上CDQ分治
做这道题真的是涨姿势了,一般的CDQ分治都是在序列上进行的,这次是把CDQ分治放树上跑了~ 考虑一半的 CDQ 分治怎么进行: 递归处理左区间,处理左区间对右区间的影响,然后再递归处理右区间. 所以, ...
- Bacteria(优先队列)
题目链接:http://codeforces.com/gym/101911/problem/C 问题简述:给定n个细胞以及每个细胞的大小,相同的细胞能进行融合,如果能融合到只剩1个细胞则输出需要额外增 ...
- 【POJ2993】Emag eht htiw Em Pleh
题目传送门 本题知识点:模拟(如果对国际象棋不熟悉的同学可以先百度一下) 本题跟POJ2996是逆过来的操作,如果做过[POJ2996]的同学就不会对题意不理解的了. (以下默认您已AC[POJ299 ...
- 多语言编程必备的十大 Vim 插件
原文地址:http://www.linuxeden.com/a/58769 使用这 10 个 Vim 插件,可以让你在写代码或运维时,感觉更棒. 我使用 Vim 文本编辑器大约 20 年了.有一段时间 ...
- 大数据应用期末总评(hadoop综合大作业)
作业要求源于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/3363 一.将爬虫大作业产生的csv文件上传到HDFS (1)在/usr ...
- C#构建可扩展的应用程序(插件)
构建可扩展的应用程序,特别是对于WinForm应用程序是特别有好处的.我们知道,企业的需求是瞬息万变的,企业在使用软件的过程中,很可能对于现有的需求有变动甚至是提出新的需求来,可是我们的软件已经部署在 ...
- html苹方字体
苹方提供了六个字重,font-family 定义如下: 苹方-简 常规体 font-family: PingFangSC-Regular, sans-serif; 苹方-简 极细体 font-fami ...
- vue+elementui搭建后台管理界面(6登录和菜单权限控制)
不同的权限对应不同的路由(菜单),同时侧边栏也根据权限异步生成,实现登录和鉴权思路如下: 登录:点击登录,服务器验证通过后返回一个 token ,然后存到 cookie,再根据 token 拉取用户权 ...
- DELPHI7 ADO二层升三层新增LINUX服务器方案
DELPHI7 ADO二层升三层新增LINUX服务器方案 引子:笔者曾经无数次在用户的LINUX服务器上创建一个WINDOWS虚拟机,用于运行自己DELPHI开发中间件. 现在再不需要如此麻烦了. 咏 ...
- net use命令详解(转)
net use命令详解 1)建立空连接: net use \\IP\ipc$ "" /user:"" (一定要注意:这一行命令中包含了3个空格) 2)建立非空连 ...