You are given a tree with N nodes which are numbered by integers 1..N. Each node is associated with an integer as the weight.

Your task is to deal with M operations of 4 types:

1.Delete an edge (x, y) from the tree, and then add a new edge (a, b). We ensure that it still constitutes a tree after adding the new edge.

2.Given two nodes a and b in the tree, change the weights of all the nodes on the path connecting node a and b (including node a and b) to a particular value x.

3.Given two nodes a and b in the tree, increase the weights of all the nodes on the path connecting node a and b (including node a and b) by a particular value d.

4.Given two nodes a and b in the tree, compute the second largest weight on the path connecting node a and b (including node a and b), and the number of times this weight occurs on the path. Note that here we need the strict second largest weight. For instance, the strict second largest weight of {3, 5, 2, 5, 3} is 3.

InputThe first line contains an integer T (T<=3), which means there are T test cases in the input.

For each test case, the first line contains two integers N and M (N, M<=10^5). The second line contains N integers, and the i-th integer is the weight of the i-th node in the tree (their absolute values are not larger than 10^4).

In next N-1 lines, there are two integers a and b (1<=a, b<=N), which means there exists an edge connecting node a and b.

The next M lines describe the operations you have to deal with. In each line the first integer is c (1<=c<=4), which indicates the type of operation.

If c = 1, there are four integers x, y, a, b (1<= x, y, a, b <=N) after c. 
If c = 2, there are three integers a, b, x (1<= a, b<=N, |x|<=10^4) after c. 
If c = 3, there are three integers a, b, d (1<= a, b<=N, |d|<=10^4) after c. 
If c = 4 (it is a query operation), there are two integers a, b (1<= a, b<=N) after c.

All these parameters have the same meaning as described in problem description.OutputFor each test case, first output "Case #x:"" (x means case ID) in a separate line.

For each query operation, output two values: the second largest weight and the number of times it occurs. If the weights of nodes on that path are all the same, just output "ALL SAME" (without quotes).Sample Input

2
3 2
1 1 2
1 2
1 3
4 1 2
4 2 3
7 7
5 3 2 1 7 3 6
1 2
1 3
3 4
3 5
4 6
4 7
4 2 6
3 4 5 -1
4 5 7
1 3 4 2 4
4 3 6
2 3 6 5
4 3 6

Sample Output

Case #1:
ALL SAME
1 2
Case #2:
3 2
1 1
3 2
ALL SAME 题解:
1:删边加边
2:路径修改
3:路径加
4:询问路径次大值及其个数

为了实现4操作,对每个节点维护最大值与次大值及个数,记为mx1,mx2,c1,c2,设x的值为v
比如往节点x加入c个值为val的数,用 solve(x,val,c) 处理
则应分四种情况维护x的信息
if(val>mx1[x])mx2[x]=mx1[x],mx1[x]=val,c2[x]=c1[x],c1[x]=c;
else if(val==mx1[x])c1[x]+=c;
else if(val>mx2[x])mx2[x]=val,c2[x]=c;
else if(val==mx2[x])c2[x]+=c;

设其左右儿子为l,r在update时只需要
清空x的信息
solve(x,v[x],1);
solve(x,mx1[l],c1[l]),solve(x,mx2[l],c2[l]);
solve(x,mx1[r],c1[r]),solve(x,mx2[r],c2[r]);
参考代码:
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<cstring>
#define inf 2000000000
#define ll long long
#define N 100005
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int T;
int n,m,top;
int q[N];
int c[N][],fa[N],v[N];
int mx1[N],mx2[N],c1[N],c2[N],size[N];
int ta[N],tc[N];
bool rev[N];
void solve(int x,int val,int c)
{
if(val>mx1[x])mx2[x]=mx1[x],mx1[x]=val,c2[x]=c1[x],c1[x]=c;
else if(val==mx1[x])c1[x]+=c;
else if(val>mx2[x])mx2[x]=val,c2[x]=c;
else if(val==mx2[x])c2[x]+=c;
}
void update(int x)
{
int l=c[x][],r=c[x][];
mx1[x]=mx2[x]=-inf;c1[x]=c2[x]=;
solve(x,v[x],);
if(l)solve(x,mx1[l],c1[l]),solve(x,mx2[l],c2[l]);
if(r)solve(x,mx1[r],c1[r]),solve(x,mx2[r],c2[r]);
size[x]=size[l]+size[r]+;
}
void add(int y,int val)
{
mx1[y]+=val;v[y]+=val;
if(mx2[y]!=-inf)mx2[y]+=val;
ta[y]+=val;
}
void change(int y,int val)
{
mx1[y]=val;v[y]=val;c1[y]=size[y];
mx2[y]=-inf;c2[y]=;
tc[y]=val;
if(ta[y])ta[y]=;
}
void pushdown(int x)
{
int l=c[x][],r=c[x][];
if(rev[x])
{
rev[x]^=;rev[l]^=;rev[r]^=;
swap(c[x][],c[x][]);
}
if(tc[x]!=-inf)
{
if(l)change(l,tc[x]);
if(r)change(r,tc[x]);
tc[x]=-inf;
}
if(ta[x])
{
if(l)add(l,ta[x]);
if(r)add(r,ta[x]);
ta[x]=;
}
}
bool isroot(int x)
{
return c[fa[x]][]!=x&&c[fa[x]][]!=x;
}
void rotate(int x)
{
int y=fa[x],z=fa[y],l,r;
if(c[y][]==x)l=;else l=;r=l^;
if(!isroot(y))
{
if(c[z][]==y)c[z][]=x;else c[z][]=x;
}
fa[x]=z;fa[y]=x;fa[c[x][r]]=y;
c[y][l]=c[x][r];c[x][r]=y;
update(y);update(x);
}
void splay(int x)
{
top=;q[++top]=x;
for(int i=x;!isroot(i);i=fa[i])
q[++top]=fa[i];
while(top)pushdown(q[top--]);
while(!isroot(x))
{
int y=fa[x],z=fa[y];
if(!isroot(y))
{
if(c[y][]==x^c[z][]==y)rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
for(int t=;x;t=x,x=fa[x])
splay(x),c[x][]=t,update(x);
}
void makeroot(int x)
{
access(x);splay(x);rev[x]^=;
}
void link(int x,int y)
{
makeroot(x);fa[x]=y;
}
void cut(int x,int y)
{
makeroot(x);access(y);splay(y);
c[y][]=fa[x]=;update(y);
}
void query(int x,int y)
{
makeroot(x);access(y);splay(y);
if(c1[y]==size[y]) puts("ALL SAME");
else printf("%d %d\n",mx2[y],c2[y]);
}
int main()
{
T=read();
for(int cas=;cas<=T;cas++)
{
printf("Case #%d:\n",cas);
n=read();m=read();
for(int i=;i<=n;i++)
v[i]=read();
for(int i=;i<=n;i++)
{
mx1[i]=v[i],c1[i]=;
mx2[i]=-inf,c2[i]=;
size[i]=;
}
for(int i=;i<=n;i++)
{
fa[i]=c[i][]=c[i][]=;
ta[i]=rev[i]=;tc[i]=-inf;
}
for(int i=;i<n;i++)
{
int u=read(),v=read();
link(u,v);
}
int opt,x,y,a,b,d;
while(m--)
{
opt=read();
if(opt==)
{
x=read();y=read();a=read();b=read();
cut(x,y);link(a,b);
}
else if(opt==)
{
a=read();b=read();x=read();
makeroot(a);access(b);splay(b);
change(b,x);
}
else if(opt==)
{
a=read();b=read();d=read();
makeroot(a);access(b);splay(b);
add(b,d);
}
else
{
a=read();b=read();
query(a,b);
}
}
}
return ;
}

HDU5002 tree的更多相关文章

  1. HDU5002 Tree(LCT)

    今天做了一道LCT模板题之后忽然间好像记起来LCT的模板怎么用了,于是就把上次网络赛的一道LCT补一下.典型的删边,加边操作,还有路径加和路径set为一个数.维护的是路径第二大以及它有多少个,后来想想 ...

  2. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  3. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  4. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  5. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  6. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  7. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  8. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  9. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

随机推荐

  1. Python 基础 内置函数 迭代器与生成器

    今天就来介绍一下内置函数和迭代器 .生成器相关的知识 一.内置函数:就是Python为我们提供的直接可以使用的函数. 简单介绍几个自己认为比较重要的 1.#1.eval函数:(可以把文件中每行中的数据 ...

  2. java多线程与线程并发二:线程互斥

    本文章内容整理自:张孝祥_Java多线程与并发库高级应用视频教程 当两条线程访问同一个资源时,可能会出现安全隐患.以打印字符串为例,先看下面的代码: // public class Test2 { p ...

  3. JS简单循环遍历json数组的方法

    例如数据库里面的json字符串是这样的 1 2 3 4 5 var str = '[{"name":"宗2瓜","num":"1& ...

  4. [剑指offer] 二叉搜索树的后序遍历序列 (由1个后续遍历的数组判断它是不是BST)

    ①题目 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. ②思路 1.后续遍历的数组里,最后一个元素是根. 2 ...

  5. 🔥「课代表」帮你总结了全网最全的Redis知识点

    你知道的越多,你不知道的越多 点赞再看,养成习惯 GitHub上已经开源 https://github.com/JavaFamily 有一线大厂面试点脑图.个人联系方式和人才交流群,欢迎Star和指教 ...

  6. python中的__call__方法

    在Python中,函数其实是一个对象: >>> f = abs >>> f.__name__ 'abs' >>> f(-) 由于 f 可以被调用, ...

  7. Orleans 3.0 为我们带来了什么

    原文:https://devblogs.microsoft.com/dotnet/orleans-3-0/ 作者:Reuben Bond,Orleans首席软件开发工程师 翻译:艾心 这是一篇来自Or ...

  8. [apue] FIFO:不是文件的文件

    众所周知,FIFO中文译为命名管道,是PIPE的升级版.而PIPE是管道,系统提供的一种进程间通讯方式,FIFO与PIPE有以下方面不同: 1) FIFO需要先在文件系统创建(mkfifo),之后使用 ...

  9. H3C交换机、路由器 ssh登录配置

    VLAN 10  创建vlan并配好ip inter vlan 10 ip add  20.1.1.1  24 qu ip route-static 0.0.0.0 0 20.1.1.254  写好静 ...

  10. 选择了uniapp开发app

    7月份打算做一简单app,之前公司做app的时候简单用过Dcloud公司的mui,当时由于uniapp刚出来,最终选择了mui.对uniapp的 了解几乎没有. 做app对我来说几乎是零基础的,当然是 ...