假设检验是以小概率事件,在一次实验中是不可能发生为前提(事实上是有可能发生的,但不是这样说的话,就落入一个圈,不能继续玩了),来否认原假设。

u检验的定义:

已知从正态母体N(u,σ2)中抽得容量为n的子样,求得子样的均值x,而且假设母体的方差σ2  为已知值,那么可利用统计量

u = (x - μ) / (σ / √n)  ~  N(0,1)

检验母体期望μ是否与某一常数相符进行检验。

(意思是说,我们假设的μ是母体均值,n是样本数,构造了u,u服从正态分布,其均值为0,中误差为1)


正态分布,可以网上查,就是对某个测量量,均值+误差的概率情况。

(标准正态分布曲线,假设均值u等于0;如果不是标准正态分布曲线,那么u相当于向左向右偏)

例如:对一短距离,测量10000次,得到中误差±σ10000 ,已经非常接近1σ 了。

而测了100次,可能得到的中误差在±1σ到±2σ之间。

(所以有一种说法,就是如果做了大量测试,得到某个均值a,中误差σ' (因为我们永远不知道真正的σ,毕竟不能做无限次测试),假如另外再测一次,得到的值为b , 如果|b - a| > 2σ ,那么认为b是噪点,毕竟从正态分布来看,大于2σ的值概率已经小于5%了)


那么,u分布到底是怎么回事呢?

(1) 假如已知母体方差σ ,意思应该是,已知一个仪器测量的方差 。 (仪器的方差,也是通过大量测试一个量,求方差得出来的,很接近真的σ)

(2) 子样的均值x ,意思应该是,测了多次,例如:1.01,1.01,1.019,1.00,0.999,……,然后求出均值,假如为x,但是≠1

(3) 母体期望μ , 就是说我们假设的一个值。例如上面,样本均值为x≠1,但是很接近1,那么可以假设μ = 1

(为什么不干脆说,母体期望μ 直接就等于x好了,干嘛多次一举?因为任性…… 如果都这样的话,就不需要搞u检验了,u检验没意义,相当于主观的100%认定μ=x,没必要检验)


u = (x - μ) / (σ / √n)

分母(σ / √n) , 就是根据误差传播定律,得到x的精度

所以,u就是:假设值 - 样本均值 : 样本精度


那么,如何检验?

在假设检验前,还有有一个值,就是对:假设μ = 1的显著水平,一般称为a值进行评估。

如果我们坚信,母体均值μ 就是等于 1 , “坚信”这个东西,也是有值的;

“坚信”值95%,就是有5%怀疑 “μ 就是等于 1” 是错的。

a的意思是,“怀疑”程度。

如果相信假设的μ就是母体均值 , 那么a设置小一点,例如:5%(0.05)、1%(0.01)


那么,u计算好,有a,就愉快的差表了。

查表,其实就是反算u' ,和u的关系。

看上面正态分布的图:

假设a是5%,那么得到的u' = 0 + 1.96 , 那么如果  -u' < u < u' ,就说明了这个u在接受域内,假设成立。


应用:

例子一:测定高温对距离测量的影响

1.  假如在高温度T的时候,测n次距离样本,得到了样本均值x

2.  假如在常温下,大量(比n大得多)测得距离均值为μ

那么,可以做假设检验:

由于相信μ ,所以设置a = 0.001,表示对μ的怀疑度很低。

如果u超出了接受域,那么认为μ是错的;但是,实际上μ又是对的,因为在条件很好且大量测得的情况下得到的。

所以,有一个结论,就是样本均值x测得很不好,导致拒绝了母体均值为μ的假设。


例子二:测定粗差

1. 假设测了n(n很大)次距离,得到样本均值x

2. 在和1的条件相同的情况下,测得另外一个距离值,测了m(m远小于n)次,均值为μ

那么可以做假设检验:

由于不太相信μ ,设置a = 0.05,表示对μ的怀疑度高。

如果超出了接受域,那么认为μ是错的,也就是m次的均值μ仍然存在粗差


更深入:

u = (x - μ) / (σ / √n)

假设分母是vi = Bx - l,中,vi的精度 。 (可以先平差,求出x的精度,然后根据误差传播定律,得到v的精度)

由于v是观测值改正数,其数学期望当然为0,因此μ=0;

如果对一个值,观测了十分多次,那么其观测值改正数当然要为0的了,因此可以将a设小点。

然后做检验。如果在接受域内,那么证明vi是对的;否则vi是错的,有粗差

u检验粗浅理解的更多相关文章

  1. paxos算法之粗浅理解

    paxos出身 paxos出身名门,它爹是没多久前获得图灵奖的在分布式领域大名鼎鼎的LeslieLamport. paxos为何而生 那么Lamport他老人家为什么要搞这个东东呢,不是吃饱了撑的,而 ...

  2. 对js闭包的粗浅理解

    只能是粗浅的,毕竟js用法太灵活. 首先抛概念:闭包(closure)是函数对象与变量作用域链在某种形式上的关联,是一种对变量的获取机制.这样写鬼能看懂. 所以要大致搞清三个东西:函数对象(funct ...

  3. C#高级编程笔记 Delegate 的粗浅理解 2016年9月 13日

    Delegate [重中之重] 委托 定义一:(参考)http://www.cnblogs.com/zhangchenliang/archive/2012/09/19/2694430.html 完全可 ...

  4. 对Java框架spring、hibernate、Struts的粗浅理解

    对 Struts 的理解:1. struts 是一个按 MVC 模式设计的 Web 层框架,其实它就是一个大大的 servlet,这个Servlet 名为 ActionServlet,或是 Actio ...

  5. UNITY 画布的粗浅理解

    画布:当画布是screen-space overlay时,这个好理解,画布可以控制如分辨率,层次等.但当画布是 world-space时,这个严格来说就不算是一个画布了,屏幕空间或相机空间的画布是先绘 ...

  6. 关于</div>的粗浅理解

    </div>作为c#中常用的一个标签,在写多个区域的内容时有着十分重要的作用.如果写简单的网页时不用div可能感受不到太大的影响,但是在写较为复杂的程序时div的分隔作用就很明显了,改动大 ...

  7. function的粗浅理解

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. 关于JavaScript闭包的粗浅理解

    在JavaScript中,使用var创建变量,会创建全局变量或局部变量. 只有在非函数内创建的变量,才是全局变量,该变量可以在任何地方被读取. 而在函数内创建变量时,只有在函数内部才可读取.在函数外部 ...

  9. CQRS粗浅理解

    CQRS(命令查询责任分离)是一种奇特的模式,表示解耦系统的输入和输出. 通常情况下,输入端将数据写到数据库,输出端从数据库查询.与读写锁的场景类似,写的过程中不能读.正常情况下没有问题,但是在大规模 ...

随机推荐

  1. Spring入门之AOP实践:@Aspect + @Pointcut + @Before / @Around / @After

    零.准备知识 1)AOP相关概念:Aspect.Advice.Join point.Pointcut.Weaving.Target等. ref: https://www.cnblogs.com/zha ...

  2. Java 学习笔记之 Synchronized锁对象

    Synchronized锁对象: Synchronized取得的锁都是对象锁,而不是把一段代码或方法当作锁,哪个线程执行带synchronized关键字的方法,哪个线程就持有该方法所属对象的锁,那么其 ...

  3. Java 学习笔记之 实例变量非线程安全

    实例变量非线程安全: 如果多个线程共同访问1个对象中的实例变量,则可能出现“非线程安全”问题. public class UnSafeHasSelfPrivateNum { private int n ...

  4. Eclipse的Debug各种视图介绍(二)

    本文链接:https://blog.csdn.net/u011781521/article/details/55000066    http://blog.csdn.net/u010075335/ar ...

  5. django-rest-framework解析请求参数

    django-rest-framework解析请求参数 前言 前面的文章中编写了接口, 调通了接口文档. 接口文档可以直接填写参数进行请求, 接下来的问题是如何接受参数, 由于请求方式与参数序列化形式 ...

  6. 【TencentOS tiny】深度源码分析(3)——队列

    队列基本概念 队列是一种常用于任务间通信的数据结构,队列可以在任务与任务间.中断和任务间传递消息,实现了任务接收来自其他任务或中断的不固定长度的消息,任务能够从队列里面读取消息,当队列中的消息是空时, ...

  7. java工具类之Arrays、Collections以及比较器

    一.Comparable和Comparator的详解 Comparable & Comparator 都是用来实现集合中元素的比较.排序的,只是 Comparable 是在集合内部定义的方法实 ...

  8. Elasticsearch Java API 很全的整理

    Elasticsearch 的API 分为 REST Client API(http请求形式)以及 transportClient API两种.相比来说transportClient API效率更高, ...

  9. bugku 很普通的数独

    下载下是一个没有后缀的文件,使用winhex打开,头文件为50 4b 03 为zip文件,修改后缀,打开压缩包,是一大堆数独图片. 仔细看了好久,发现这几张图片像二维码,而且1 5 21这三张图的位置 ...

  10. tp5中使用中间控制器代理路由,以避免创建过多的无用控制器方法

    在写项目的时候偶尔会加载一些不需要传递参数的静态视图,例如 class Index extends Common { public function index() { return $this-&g ...