模型量化

什么是量化

模型的weights数据一般是float32的,量化即将他们转换为int8的。当然其实量化有很多种,主流是int8/fp16量化,其他的还有比如

  • 二进制神经网络:在运行时具有二进制权重和激活的神经网络,以及在训练时计算参数的梯度。
  • 三元权重网络:权重约束为+1,0和-1的神经网络
  • XNOR网络:过滤器和卷积层的输入是二进制的。 XNOR 网络主要使用二进制运算来近似卷积。

    现在很多框架或者工具比如nvidia的TensorRT,xilinx的DNNDK,TensorFlow,PyTorch,MxNet 等等都有量化的功能.

量化的优缺点

量化的优点很明显了,int8占用内存更少,运算更快,量化后的模型可以更好地跑在低功耗嵌入式设备上。以应用到手机端,自动驾驶等等。

缺点自然也很明显,量化后的模型损失了精度。造成模型准确率下降.

量化的原理

先来看一下计算机如何存储浮点数与定点数:





其中负指数决定了浮点数所能表达的绝对值最小的非零数;而正指数决定了浮点数所能表达的绝对值最大的数,也即决定了浮点数的取值范围。

float的范围为-2^128 ~ +2^128. 可以看到float的值域分布是极其广的。

说回量化的本质是:找到一个映射关系,使得float32与int8能够一一对应。那问题来了,float32能够表达值域是非常广的,而int8只能表达[0,255].

怎么能够用255个数代表无限多(其实也不是无限多,很多,但是也还是有限个)的浮点数?

幸运地是,实践证明,神经网络的weights往往是集中在一个非常狭窄的范围,如下:



所以这个问题解决了,即我们并不需要对值域-2^128 ~ +2^128的所有值都做映射。但即便是一个很小的范围,比如[-1,1]能够表达的浮点数也是非常多的,所以势必

会有多个浮点数被映射成同一个int8整数.从而造成精度的丢失.

这时候,第二个问题来了,为什么量化是有效的,为什么weights变为int8后,并不会让模型的精度下降太多?

在搜索了大量的资料以后,我发现目前并没有一个很严谨的理论解释这个事情.

您可能会问为什么量化是有效的(具有足够好的预测准确度),尤其是将 FP32 转换为 INT8 时已经丢失了信息?严格来说,目前尚未出现相关的严谨的理论。一个直觉解释是,神经网络被过度参数化,进而包含足够的冗余信息,裁剪这些冗余信息不会导致明显的准确度下降。相关证据是,对于给定的量化方法,FP32 网络和 INT8 网络之间的准确度差距对于大型网络来说较小,因为大型网络过度参数化的程度更高

和深度学习模型一样,很多时候,我们无法解释为什么有的参数就是能work,量化也是一样,实践证明,量化损失的精度不会太多,do not know why it works,it just works.

如何做量化

由以下公式完成float和int8之间的相互映射.

\(x_{float} = x_{scale} \times (x_{quantized} - x_{zero\_point})\)

其中参数由以下公式确定:



举个例子,假设原始fp32模型的weights分布在[-1.0,1.0],要映射到[0,255],则\(x_{scale}=2/255\),\(x_{zero\_point}=255-1/(2/255)=127\)

量化后的乘法和加法:

依旧以上述例子为例:

我们可以得到0.0:127,1.0:255的映射关系.

那么原先的0.0 X 1.0 = 0.0 注意:并非用127x255再用公式转回为float,这样算得到的float=(2/255)x(127x255-127)=253





我们假设所有layer的数据分布都是一致的.则根据上述公式可得\(z_{quantized}=127\),再将其转换回float32,即0.0.

同理加法:





tflite_convert

日常吐槽:tensorflow sucks. tensorflow要不是大公司开发的,绝对不可能这么流行. 文档混乱,又多又杂,api难理解难使用.

tensorflow中使用tflite_convert做模型量化.用法:

tflite_convert \
--output_file=/tmp/foo.cc \
--graph_def_file=/tmp/mobilenet_v1_0.50_128/frozen_graph.pb \
--inference_type=QUANTIZED_UINT8 \
--input_arrays=input \
--output_arrays=MobilenetV1/Predictions/Reshape_1 \
--default_ranges_min=0 \
--default_ranges_max=6 \
--mean_values=128 \
--std_dev_values=127

官方指导:https://www.tensorflow.org/lite/convert/cmdline_examples

关于各参数的说明参见:

https://www.tensorflow.org/lite/convert/cmdline_reference

关于参数mean_values,std_dev_values比较让人困惑.tf的文档里,对这个参数的描述有3种形式.

  • (mean, std_dev)
  • (zero_point, scale)
  • (min,max)

    转换关系如下:
std_dev = 1.0 / scale
mean = zero_point mean = 255.0*min / (min - max)
std_dev = 255.0 / (max - min)

结论:

训练时模型的输入tensor的值在不同范围时,对应的mean_values,std_dev_values分别如下:

  • range (0,255) then mean = 0, std_dev = 1
  • range (-1,1) then mean = 127.5, std_dev = 127.5
  • range (0,1) then mean = 0, std_dev = 255

参考:

https://heartbeat.fritz.ai/8-bit-quantization-and-tensorflow-lite-speeding-up-mobile-inference-with-low-precision-a882dfcafbbd

https://stackoverflow.com/questions/54830869/understanding-tf-contrib-lite-tfliteconverter-quantization-parameters/58096430#58096430

https://arleyzhang.github.io/articles/923e2c40/

https://zhuanlan.zhihu.com/p/79744430

https://zhuanlan.zhihu.com/p/58182172

int8量化

模型量化原理及tflite示例的更多相关文章

  1. Optaplanner规划引擎的工作原理及简单示例(2)

    开篇 在前面一篇关于规划引擎Optapalnner的文章里(Optaplanner规划引擎的工作原理及简单示例(1)),老农介绍了应用Optaplanner过程中需要掌握的一些基本概念,这些概念有且于 ...

  2. tensorflow模型量化实例

    1,概述 模型量化应该是现在最容易实现的模型压缩技术,而且也基本上是在移动端部署的模型的毕竟之路.模型量化基本可以分为两种:post training quantizated和quantization ...

  3. deeplearning模型量化实战

    deeplearning模型量化实战 MegEngine 提供从训练到部署完整的量化支持,包括量化感知训练以及训练后量化,凭借"训练推理一体"的特性,MegEngine更能保证量化 ...

  4. 大数据运算模型 MapReduce 原理

    大数据运算模型 MapReduce 原理 2016-01-24 杜亦舒 MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计 ...

  5. tensorflow模型量化

    tensorflow模型量化/DATA/share/DeepLearning/code/tensorflow/bazel-bin/tensorflow/tools/graph_transforms/t ...

  6. Python进阶(十六)----面向对象之~封装,多态,鸭子模型,super原理(单继承原理,多继承原理)

    Python进阶(十六)----面向对象之~封装,多态,鸭子模型,super原理(单继承原理,多继承原理) 一丶封装 , 多态 封装:            将一些东西封装到一个地方,你还可以取出来( ...

  7. CUDA上深度学习模型量化的自动化优化

    CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数 ...

  8. Pytorch模型量化

    在深度学习中,量化指的是使用更少的bit来存储原本以浮点数存储的tensor,以及使用更少的bit来完成原本以浮点数完成的计算.这么做的好处主要有如下几点: 更少的模型体积,接近4倍的减少: 可以更快 ...

  9. TensorFlow 8 bit模型量化

    本文基本参考自这篇文章:8-Bit Quantization and TensorFlow Lite: Speeding up mobile inference with low precision ...

随机推荐

  1. Element filtername is not allowed here-web.xml version="3.0"-intellij idea

    Element filtername is not allowed here-web.xml version="3.0"-intellij idea Intellij IDEA 报 ...

  2. linux小白的入门和目标。

    大家好! 我是一名Linux小白,有幸来到马哥教育这个大家庭与各位同学在未来的五个月里一起学习Linux技术!尽管Linux对于刚接触到的新手会很难,但是我知道痛苦只是暂时的,满路荆棘的后面必是明亮宽 ...

  3. H5与CSS3常用设置

    1.设置div铺满全屏 对于一个div1,要使其属性height:100%生效,需要使其所有父元素,有确定的属性height.要铺满全屏,就是从html开始,所有的height为100%. 2.垂直居 ...

  4. 条款03:尽肯使用const

    定义常量 define 是一个Compile-Time的概念,它的生命周期止于编译器期,它存在与程序的代码段,在实际程序中它只是一个常数.一个命令中的参数.并没有实际的存在 const常量存在于程序的 ...

  5. Java线程学习详解

    线程基础 1. 线程的生命周期 1.1 新建状态: 使用 new 关键字和 Thread 类或其子类建立一个线程对象后,该线程对象就处于新建状态.它保持这个状态直到程序 start() 这个线程. 1 ...

  6. 【模板】prufer序列

    如何构造一个prufer序列? 我们给一棵无根树的节点编上号,每次找到一个编号最小的度为1节点,删除它,并输出与它连接的点的编号,直到只剩下两个节点. 这样,我们就构造出来了一个prufer序列. 通 ...

  7. [考试反思]1030csp-s模拟测试94:未知

    排名也未知.第1或第5. 分数也未知,300或260. 人生真是大起大落... 啊啊啊啊啊我好感动啊竟然重测了一次----- 评测机怎么测怎么RE,本机怎么测怎么AC(任意编译指令,任意评测平台) 结 ...

  8. 石头剪刀步(rps):dp,概率&期望

    既然已经给std了,直接扔代码啦.代码注释还是不错哒. 因为我也有点懵,不明白的或有不同见解的一定要在评论区喷我啊! #include<bits/stdc++.h> using names ...

  9. 20190630A(贪心)

    题目描述 约翰留下他的N只奶牛上山采木.他离开的时候,她们像往常一样悠闲地在草场里吃草.可是,当他回来的时候,他看到了一幕惨剧:牛们正躲在他的花园里,啃食着他心爱的美丽花朵!为了使接下来花朵的损失最小 ...

  10. 获取Centos的Docker CE

    Docker文档 Docker提供了一种在容器中运行安全隔离的应用程序的方法,它与所有依赖项和库打包在一起. 获取Centos的Docker CE 一.OS要求 要安装Docker Engine-Co ...