好,前面我们介绍了一般二叉树、完全二叉树、满二叉树,这篇文章呢,我们要介绍的是哈夫曼树。

哈夫曼树也叫最优二叉树,与哈夫曼树相关的概念还有哈夫曼编码,这两者其实是相同的。哈夫曼编码是哈夫曼在1952年提出的。现在哈夫曼编码多应用在文本压缩方面。接下来,我们就来介绍哈夫曼树到底是个什么东西?哈夫曼编码又是什么,以及它如何应用于文本压缩。

哈夫曼树(Huffman Tree)

给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

首先,我们有这样一些数据:

sourceData = [('a', 8), ('b', 5), ('c', 3), ('d', 3), ('e', 8), ('f', 6), ('g', 2), ('h', 5), ('i', 9), ('j', 5), ('k', 7), ('l', 5), ('m', 10), ('n', 9)]

每一个数据项是一个元组,元组的第一项是数据内容,第二项是该数据的权重。也就是说,用于构建哈夫曼树的数据是带权重的。假设这些数据里面的字母a-n的权重是根据这些字母在y一个文本出出现的概率计算得出的,字母出现的概率越高,则该字母的权重越大。例如字母 a 的权重为 8 .

好,拿到数据我们就可以来构建哈夫曼树了。

  1. 首先,找出所有元素中权重最小的两个元素,即g(2)和c(3),
  2. 以g和c为子节点构建二叉树,则构建的二叉树的父节点的权重为 2+3 = 5.
  3. 从除g和c以外剩下的元素和新构建的权重为5的节点中选出权重最小的两个节点,
  4. 进行第 2 步操作。

以此类推,直至最后合成一个二叉树就是哈夫曼树。

我们用图例来表示一下:

好,这里我们的哈夫曼树就构建好了,节点中字母后面的数字表示该字母的权重,就是前面给定的数据。在这里我要强调的是,同样的数据创建的哈夫曼树并不是唯一的,所以只要按照规则一步一步没有出错,你的哈夫曼树就是正确的。

我们现在将访问左节点定义为0,访问右节点定义为1.则我们现在访问字母a,则它的编码为0110,访问字母n的编码为111,这个编码就是哈夫曼编码。

通过比对不同字母的哈夫曼编码,你发现了什么?

权重越大的字母对应的哈夫曼编码越短,权重越小的字母对应的哈夫曼编码则越长。也就是说文本中出现概率大的字母编码短,出现概率小的字母编码长。通过这种编码方式来表示文本中的字母,那所得整个文本的编码长度也会缩短。

这就是哈夫曼树也就是哈夫曼编码在文本压缩中的应用。

下面我们用代码来实现:

定义一个二叉树类:

class BinaryTree:
def __init__(self, data, weight):
self.data = data
self.weight = weight
self.left = None
self.right = None

获取节点列表中权重最小的两个节点:

# 定义获取列表中权重最大的两个节点的方法:
def min2(li):
result = [BinaryTree(None, float('inf')), BinaryTree(None, float('inf'))]
li2 = []
for i in range(len(li)):
if li[i].weight < result[0].weight:
if result[1].weight != float('inf'):
li2.append(result[1])
result[0], result[1] = li[i], result[0]
elif li[i].weight < result[1].weight:
if result[1].weight != float('inf'):
li2.append(result[1])
result[1] = li[i]
else:
li2.append(li[i])
return result, li2

定义生成哈夫曼树的方法:

def makeHuffman(source):
m2, data = min2(source)
print(m2[0].data, m2[1].data)
left = m2[0]
right = m2[1] sumLR = left.weight + right.weight
father = BinaryTree(None, sumLR)
father.left = left
father.right = right
if data == []:
return father
data.append(father)
return makeHuffman(data)

定义广度优先遍历方法:

# 递归方式实现广度优先遍历
def breadthFirst(gen, index=0, nextGen=[], result=[]): if type(gen) == BinaryTree:
gen = [gen]
result.append((gen[index].data, gen[index].weight))
if gen[index].left != None:
nextGen.append(gen[index].left)
if gen[index].right != None:
nextGen.append(gen[index].right) if index == len(gen)-1:
if nextGen == []:
return
else:
gen = nextGen
nextGen = []
index = 0
else:
index += 1
breadthFirst(gen, index, nextGen,result) return result

输入数据:

# 某篇文章中部分字母根据出现的概率规定权重
sourceData = [('a', 8), ('b', 5), ('c', 3), ('d', 3), ('e', 8), ('f', 6), ('g', 2), ('h', 5), ('i', 9), ('j', 5), ('k', 7), ('l', 5), ('m', 10), ('n', 9)]
sourceData = [BinaryTree(x[0], x[1]) for x in sourceData]

创建哈夫曼树并进行广度优先遍历:

huffman = makeHuffman(sourceData)
print(breadthFirst(huffman))

OK ,我们的哈夫曼树就介绍到这里了,你还有什么不懂的问题记得留言给我哦。

数据结构-哈夫曼树(python实现)的更多相关文章

  1. C#数据结构-赫夫曼树

    什么是赫夫曼树? 赫夫曼树(Huffman Tree)是指给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小.哈夫曼树(也称为最优二叉树)是带权路径长度最短的树,权值较大的结点 ...

  2. Java数据结构和算法(四)赫夫曼树

    Java数据结构和算法(四)赫夫曼树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 赫夫曼树又称为最优二叉树,赫夫曼树的一个 ...

  3. 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  4. 【数据结构】赫夫曼树的实现和模拟压缩(C++)

    赫夫曼(Huffman)树,由发明它的人物命名,又称最优树,是一类带权路径最短的二叉树,主要用于数据压缩传输. 赫夫曼树的构造过程相对比较简单,要理解赫夫曼数,要先了解赫夫曼编码. 对一组出现频率不同 ...

  5. Android版数据结构与算法(七):赫夫曼树

    版权声明:本文出自汪磊的博客,未经作者允许禁止转载. 近期忙着新版本的开发,此外正在回顾C语言,大部分时间没放在数据结构与算法的整理上,所以更新有点慢了,不过既然写了就肯定尽力将这部分完全整理好分享出 ...

  6. 6-9-哈夫曼树(HuffmanTree)-树和二叉树-第6章-《数据结构》课本源码-严蔚敏吴伟民版

    课本源码部分 第6章  树和二叉树 - 哈夫曼树(HuffmanTree) ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接☛☛☛ <数据结构-C语言版> ...

  7. 20172332 2017-2018-2 《程序设计与数据结构》Java哈夫曼编码实验--哈夫曼树的建立,编码与解码

    20172332 2017-2018-2 <程序设计与数据结构>Java哈夫曼编码实验--哈夫曼树的建立,编码与解码 哈夫曼树 1.路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子 ...

  8. hdu 2527:Safe Or Unsafe(数据结构,哈夫曼树,求WPL)

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  9. 数据结构之C语言实现哈夫曼树

    1.基本概念 a.路径和路径长度 若在一棵树中存在着一个结点序列 k1,k2,……,kj, 使得 ki是ki+1 的双亲(1<=i<j),则称此结点序列是从 k1 到 kj 的路径. 从 ...

随机推荐

  1. Hadoop分布式文件系统

    在一个经典的数据架构中,Hadoop是处理复杂数据流的核心.数据从各种系统中收集而来,并汇总导入到Hadoop分布式文件系统HDFS中,然后通过MapReduce或者其它基于MapReduce封装的语 ...

  2. C++函数不写bool返回值,居然编译运行全部通过,但判断结果就不对了

    bool MyStart::IsCoorectParam(QString strParam) { if (strParam=="-aa" || strParam=="-b ...

  3. Android进程间通信-AIDL实现原理

    Android进程间通信基于Proxy(代理)与Stub(桩或存根)的设计模式(如图1-1所示).其中,Proxy将特殊性接口转换成通用性接口,Stub将通用性接口转换成特殊性接口,二者之间的数据转换 ...

  4. tbox的项目:vm86(汇编语言虚拟机),tbox(类似dlib),gbox(c语言实现的多平台图形库)

    https://github.com/tboox/tbox GBOX是一个用c语言实现的多平台图形库,支持windows.linux.mac.ios.android以及其他嵌入式系统. 现在这个项目, ...

  5. NUMA 架构

    NUMA架构的CPU -- 你真的用好了么? - http://cenalulu.github.io/linux/numa/ SQL Server 如何支持 NUMA - https://docs.m ...

  6. 避免用户重复点击按钮(使用Enable:=False,消息繁忙时会有堵塞的问题,只能改用Sleep)

    // 现象描述://    用户点击按钮后程序开始繁忙工作,这时候用户不知道是否成功,就继续点几次//    采用Enalbe = false ... = true的方式发现还会触发点击,分析原因如下 ...

  7. 一、Linux常用命令

    1.ls 作用:列出文件信息,默认为当前目录下 语法: -a:列出所有的文件,包括以.开头的隐藏文件 -d:列出目录本身,并不包含目录中的文件 -h:和-l一起使用,文件大小人类易读 -l:长输出(“ ...

  8. asp.net core 系列之Response caching 之 Distributed caching(3)

    这篇文章讲解分布式缓存,即 Distributed caching in ASP.NET Core Distributed caching in ASP.NET Core 分布式缓存是可以在多个应用服 ...

  9. Spring Boot:使用Redis存储技术

    综合概述 Redis是一个开源免费的高性能key-value数据库,读取速度达110000次/s,写入速度达81000次/s.Redis支持丰富的数据类型,如Lists, Hashes, Sets 及 ...

  10. 简单的scrapy实例

    前天实验室的学长要求写一个简单的scrapy工程出来,之前也多少看了点scrapy的知识,但始终没有太明白,刚好趁着这个机会,加深一下对scrapy工作流程的理解.由于临近期末,很多作业要做(其实.. ...