本质上讲,Focal Loss 就是一个解决分类问题中类别不平衡、分类难度差异的一个 loss,总之这个工作一片好评就是了。

看到这个 loss,开始感觉很神奇,感觉大有用途。因为在 NLP 中,也存在大量的类别不平衡的任务。最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这就是一个类别严重不平衡的情况。

硬截断

整篇文章都是从二分类问题出发,同样的思想可以用于多分类问题。二分类问题的标准 loss 是交叉熵。

其中 y∈{0,1} 是真实标签,ŷ 是预测值。当然,对于二分类我们几乎都是用 sigmoid 函数激活 ŷ =σ(x),所以相当于:

我们有 1−σ(x)=σ(−x)

曾经针对“集中精力关注难分样本”这个想法提出了一个“硬截断”的 loss,形式为:

其中:

这样的做法就是:正样本的预测值大于 0.5 的,或者负样本的预测值小于 0.5 的,我都不更新了,把注意力集中在预测不准的那些样本,当然这个阈值可以调整。这样做能部分地达到目的,但是所需要的迭代次数会大大增加。

原因是这样的:以正样本为例,我只告诉模型正样本的预测值大于 0.5 就不更新了,却没有告诉它要“保持”大于 0.5,所以下一阶段,它的预测值就很有可能变回小于 0.5 了。当然,如果是这样的话,下一回合它又被更新了,这样反复迭代,理论上也能达到目的,但是迭代次数会大大增加。

所以,要想改进的话,重点就是“不只是要告诉模型正样本的预测值大于0.5就不更新了,而是要告诉模型当其大于0.5后就只需要保持就好了”。好比老师看到一个学生及格了就不管了,这显然是不行的。如果学生已经及格,那么应该要想办法要他保持目前这个状态甚至变得更好,而不是不管。

软化 loss

硬截断会出现不足,关键地方在于因子 λ(y,ŷ) 是不可导的,或者说我们认为它导数为 0,因此这一项不会对梯度有任何帮助,从而我们不能从它这里得到合理的反馈(也就是模型不知道“保持”意味着什么)。

解决这个问题的一个方法就是“软化”这个 loss,“软化”就是把一些本来不可导的函数用一些可导函数来近似,数学角度应该叫“光滑化”。这样处理之后本来不可导的东西就可导了,类似的算例还有梯度下降和EM算法:系出同源,一脉相承中的 kmeans 部分。我们首先改写一下 L∗

这里的 θ 就是单位阶跃函数:

这样的 L∗ 跟原来的是完全等价的,由于 σ(0)=0.5,因此它也等价于:

这时候思路就很明显了,要想“软化”这个 loss,就得“软化” θ(x),而软化它就再容易不过,它就是 sigmoid 函数(不懂可以去看sigmoid图像)。我们有:

所以很显然,我们将 θ(x) 替换为 σ(Kx) 即可:

现在跟 Focal Loss 做个比较。

Focal Loss

Kaiming 大神的 Focal Loss 形式是:

如果落实到 ŷ =σ(x) 这个预测,那么就有:

特别地,如果 K 和 γ 都取 1,那么 L∗∗=Lfl

事实上 K 和 γ 的作用都是一样的,都是调节权重曲线的陡度,只是调节的方式不一样。注意L∗∗或 Lfl 实际上都已经包含了对不均衡样本的解决方法,或者说,类别不均衡本质上就是分类难度差异的体现。

比如负样本远比正样本多的话,模型肯定会倾向于数目多的负类(可以想象全部样本都判为负类),这时候,负类的 ŷ γ 或 σ(Kx) 都很小,而正类的 (1−ŷ )γ 或 σ(−Kx) 就很大,这时候模型就会开始集中精力关注正样本。

还有种理解方法,如果有8个类别,1个正类别,7个负类别,7个负类别加起来的loss大于了1个正类别的loss,而这个函数就是相当于调节的作用,将负样本的loss放低,正样本的loss放大。

当然,Kaiming 大神还发现对 Lfl 做个权重调整,结果会有微小提升。

通过一系列调参,得到 α=0.25, γ=2(在他的模型上)的效果最好。注意在他的任务中,正样本是属于少数样本,也就是说,本来正样本难以“匹敌”负样本,但经过 (1−ŷ )γ 和 ŷγ 的“操控”后,也许形势还逆转了,还要对正样本降权。

不过我认为这样调整只是经验结果,理论上很难有一个指导方案来决定 α 的值,如果没有大算力调参,倒不如直接让 α=0.5(均等)。

多分类

Focal Loss 在多分类中的形式也很容易得到,其实就是:

ŷt 是目标的预测值,一般就是经过 softmax 后的结果。那我自己构思的 L∗∗ 怎么推广到多分类?也很简单:

这里 xt 也是目标的预测值,但它是 softmax 前的结果。

参考:https://zhuanlan.zhihu.com/p/32423092

Focal Loss 理解的更多相关文章

  1. Focal Loss理解

    1. 总述 Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题.该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘. 2. 损失函数形式 ...

  2. 技术干货 | 基于MindSpore更好的理解Focal Loss

    [本期推荐专题]物联网从业人员必读:华为云专家为你详细解读LiteOS各模块开发及其实现原理. 摘要:Focal Loss的两个性质算是核心,其实就是用一个合适的函数去度量难分类和易分类样本对总的损失 ...

  3. [论文理解]Focal Loss for Dense Object Detection(Retina Net)

    Focal Loss for Dense Object Detection Intro 这又是一篇与何凯明大神有关的作品,文章主要解决了one-stage网络识别率普遍低于two-stage网络的问题 ...

  4. Focal Loss

    为了有效地同时解决样本类别不均衡和苦难样本的问题,何凯明和RGB以二分类交叉熵为例提出了一种新的Loss----Focal loss 原始的二分类交叉熵形式如下: Focal Loss形式如下: 上式 ...

  5. 【深度学习】Focal Loss 与 GHM——解决样本不平衡问题

    Focal Loss 与 GHM Focal Loss Focal Loss 的提出主要是为了解决难易样本数量不平衡(注意:这有别于正负样本数量不均衡问题)问题.下面以目标检测应用场景来说明. 一些 ...

  6. 处理样本不平衡的LOSS—Focal Loss

    0 前言 Focal Loss是为了处理样本不平衡问题而提出的,经时间验证,在多种任务上,效果还是不错的.在理解Focal Loss前,需要先深刻理一下交叉熵损失,和带权重的交叉熵损失.然后我们从样本 ...

  7. 焦点损失函数 Focal Loss 与 GHM

    文章来自公众号[机器学习炼丹术] 1 focal loss的概述 焦点损失函数 Focal Loss(2017年何凯明大佬的论文)被提出用于密集物体检测任务. 当然,在目标检测中,可能待检测物体有10 ...

  8. Focal loss论文解析

    Focal loss是目标检测领域的一篇十分经典的论文,它通过改造损失函数提升了一阶段目标检测的性能,背后关于类别不平衡的学习的思想值得我们深入地去探索和学习.正负样本失衡不仅仅在目标检测算法中会出现 ...

  9. Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection

    目录 Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Generalized Focal L ...

随机推荐

  1. docker 中 安装配置 mysqlcluster(arm)

    1:创建两个docker container 这里我使用给指定 container ip的形式创建: 查看容器网络 docker network ls 创建一个新的bridge网络 docker ne ...

  2. Redis+Keepalived

    简介 Redis高可用方案,保障两台Redis任意节点故障可正常使用. 方案:Redis主从复制+Redis哨兵+Keepalived 环境 系统:Centos/Radhat 7 服务1:Redis ...

  3. go-gui-控件和信号

    go-gui-控件和信号 控件 控件简介 控件是对数据和方法的封装.控件有自己的属性和方法.属性是指控件的特征.方法是指控件的一些简单而可见的功能.如按钮就是一个控件,这个按钮是方形的,里面有张图片, ...

  4. CSS3/CSS之居中解析(水平+垂直居中、水平居中,垂直居中)

    首先,我们来看下垂直居中: (1).如果是单行文本,则可以设置的line-height的数值,让其等于父级元素的高度! <!DOCTYPE html> <html lang=&quo ...

  5. 使用Fiddler进行HTTP流量分析

    - 安装 Fiddler是一款免费软件,可以到其官网下载,地址是https://www.telerik.com/fiddler,也可以从我的网盘中下载,发送"fiddler"获取下 ...

  6. union注入的几道ctf题,实验吧简单的sql注入1,2,这个看起来有点简单和bugku的成绩单

    这几天在做CTF当中遇到了几次sql注入都是union,写篇博客记录学习一下. 首先推荐一篇文章“https://blog.csdn.net/Litbai_zhang/article/details/ ...

  7. 【jQuery】jQuery基础

    jQuery介绍 jQuery是一个轻量级JS库,使用十分简单: jQuery的核心是选择器,用于获取页面元素: jQuery提供了大量高效的方法,开发速度大幅提升: jQuery选择器 jQuery ...

  8. NetCoreAPI添加Swagger

    public class Startup { public Startup(IConfiguration configuration) { Configuration = configuration; ...

  9. 高并发高可、O2O、微服务架构用学习网站

    高并发高可.O2O.微服务架构用学习网站 https://www.itkc8.com 非常感谢http://www.cnblogs.com/skyblog/p/5044486.html 关于架构,笔者 ...

  10. windows10 设置 socks5 代理

    这个很多年前就是这种方式了,最近配置又忘了,今天备份一下: 方法1: 方法2: 原文链接 如果能帮助到你,希望能点击右下角推荐,感谢!