原文链接:http://www.one2know.cn/nlp19/

  • 使用IMDB情绪数据来比较CNN和RNN两种方法,预处理与上节相同
from __future__ import print_function
import numpy as np
import pandas as pd
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense,Dropout,Embedding,LSTM,Bidirectional
from keras.datasets import imdb
from sklearn.metrics import accuracy_score,classification_report # 限制最大的特征数
max_features = 15000
max_len = 300
batch_size = 64 # 加载数据
(x_train,y_train),(x_test,y_test) = imdb.load_data(num_words=max_features)
print(len(x_train),'train observations')
print(len(x_test),'test observations')

输出:

Using TensorFlow backend.
25000 train observations
25000 test observations
  • 如何实现

    1.预处理

    2.LSTM模型的构建和验证

    3.模型评估
  • 代码
from __future__ import print_function
import numpy as np
import pandas as pd
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense,Dropout,Embedding,LSTM,Bidirectional
from keras.datasets import imdb
from sklearn.metrics import accuracy_score,classification_report # 限制最大的特征数
max_features = 15000
max_len = 300
batch_size = 64 # 加载数据
(x_train,y_train),(x_test,y_test) = imdb.load_data(num_words=max_features)
# print(len(x_train),'train observations')
# print(len(x_test),'test observations') # 通过序列填充将所有的数据整合为一个固定维度,提高运行效率
x_train_2 = sequence.pad_sequences(x_train,maxlen=max_len)
x_test_2 = sequence.pad_sequences(x_test,maxlen=max_len)
print('x_train_2.shape:',x_train_2.shape)
print('x_test_2.shape:',x_test_2.shape)
y_train = np.array(y_train)
y_test = np.array(y_test) # keras框架 => 双向LSTM模型
# 双向LSTM网络有前向和后向连接,使句子中的单词可以同时与左右词汇产生连接
model = Sequential()
model.add(Embedding(max_features,128,input_length=max_len)) # 嵌入层将维数降到128
model.add(Bidirectional(LSTM(64))) # 双向LSTM层
model.add(Dropout(0.5)) # 随机失活
model.add(Dense(1,activation='sigmoid')) # 稠密层 将情感分类0或1
model.compile('adam','binary_crossentropy',metrics=['accuracy']) # 二元交叉熵
print(model.summary()) model.fit(x_train_2,y_train,batch_size=batch_size,epochs=4,validation_split=0.2) # 预测及结果
y_train_predclass = model.predict_classes(x_train_2,batch_size=1000)
y_test_predclass = model.predict_classes(x_test_2,batch_size=1000)
y_train_predclass.shape = y_train.shape
y_test_predclass.shape = y_test.shape
print('\n\nLSTM Bidirectional Sentiment Classification - Train accuracy:',
round(accuracy_score(y_train,y_train_predclass),3))
print('\nLSTM Bidirectional Sentiment Classification of Training data\n',
classification_report(y_train,y_train_predclass))
print('\nLSTM Bidirectional Sentiment Classification - Train Confusion Matrix\n\n',
pd.crosstab(y_train,y_train_predclass,rownames=['Actuall'],colnames=['Predicted']))
print('\nLSTM Bidirectional Sentiment Classification - Test accuracy:',
round(accuracy_score(y_test,y_test_predclass),3))
print('\nLSTM Bidirectional Sentiment Classification of Test data\n',
classification_report(y_test,y_test_predclass))
print('\nLSTM Bidirectional Sentiment Classification - Test Confusion Matrix\n\n',
pd.crosstab(y_test,y_test_predclass,rownames=['Actuall'],colnames=['Predicted']))

输出:

Using TensorFlow backend.
x_train_2.shape: (25000, 300)
x_test_2.shape: (25000, 300)
WARNING:tensorflow:From D:\Python37\Lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From D:\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 300, 128) 1920000
_________________________________________________________________
bidirectional_1 (Bidirection (None, 128) 98816
_________________________________________________________________
dropout_1 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 1) 129
=================================================================
Total params: 2,018,945
Trainable params: 2,018,945
Non-trainable params: 0
_________________________________________________________________
None
WARNING:tensorflow:From D:\Python37\Lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Train on 20000 samples, validate on 5000 samples
Epoch 1/4
2019-07-07 20:03:45.649853: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 64/20000 [..............................] - ETA: 18:21 - loss: 0.6915 - acc: 0.5781
128/20000 [..............................] - ETA: 13:04 - loss: 0.6918 - acc: 0.5938
192/20000 [..............................] - ETA: 11:14 - loss: 0.6915 - acc: 0.5729
256/20000 [..............................] - ETA: 10:19 - loss: 0.6917 - acc: 0.5469
320/20000 [..............................] - ETA: 9:45 - loss: 0.6915 - acc: 0.5469
此处省略一堆epoch的一堆操作 LSTM Bidirectional Sentiment Classification - Train accuracy: 0.955 LSTM Bidirectional Sentiment Classification of Training data
precision recall f1-score support 0 0.96 0.95 0.95 12500
1 0.95 0.96 0.95 12500 accuracy 0.95 25000
macro avg 0.95 0.95 0.95 25000
weighted avg 0.95 0.95 0.95 25000 LSTM Bidirectional Sentiment Classification - Train Confusion Matrix Predicted 0 1
Actuall
0 11928 572
1 561 11939 LSTM Bidirectional Sentiment Classification - Test accuracy: 0.859 LSTM Bidirectional Sentiment Classification of Test data
precision recall f1-score support 0 0.86 0.86 0.86 12500
1 0.86 0.85 0.86 12500 accuracy 0.86 25000
macro avg 0.86 0.86 0.86 25000
weighted avg 0.86 0.86 0.86 25000 LSTM Bidirectional Sentiment Classification - Test Confusion Matrix Predicted 0 1
Actuall
0 10809 1691
1 1829 10671
time============== 2080.618681907654

NLP(十九) 双向LSTM情感分类模型的更多相关文章

  1. NLP学习(2)----文本分类模型

    实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) ...

  2. pytorch LSTM情感分类全部代码

    先运行main.py进行文本序列化,再train.py模型训练 dataset.py from torch.utils.data import DataLoader,Dataset import to ...

  3. tensorflow学习笔记(三十九):双向rnn

    tensorflow 双向 rnn 如何在tensorflow中实现双向rnn 单层双向rnn 单层双向rnn (cs224d) tensorflow中已经提供了双向rnn的接口,它就是tf.nn.b ...

  4. Python之路【第二十九篇】:django ORM模型层

    ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员的 ...

  5. PaddlePaddle︱开发文档中学习情感分类(CNN、LSTM、双向LSTM)、语义角色标注

    PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产 ...

  6. [DeeplearningAI笔记]序列模型2.9情感分类

    5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.9 Sentiment classification 情感分类 情感分类任务简单来说是看一段文本,然后分辨这个人是否喜欢 ...

  7. kaggle——Bag of Words Meets Bags of Popcorn(IMDB电影评论情感分类实践)

    kaggle链接:https://www.kaggle.com/c/word2vec-nlp-tutorial/overview 简介:给出 50,000 IMDB movie reviews,进行0 ...

  8. 基于双向LSTM和迁移学习的seq2seq核心实体识别

    http://spaces.ac.cn/archives/3942/ 暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下.模型的效果不是最好的,但是胜在“端到端”, ...

  9. NLP文本情感分类传统模型+深度学习(demo)

    文本情感分类: 文本情感分类(一):传统模型 摘自:http://spaces.ac.cn/index.php/archives/3360/ 测试句子:工信处女干事每月经过下属科室都要亲口交代24口交 ...

随机推荐

  1. 勘误:EOS资源抵押退还

    关键字:勘误,delegatebw,undelegatebw,listbw,资源管理,抵押,解抵押,返还资源 EOS中,资源抵押与解抵押是通过一对命令完成的:delegatebw,undelegate ...

  2. Vue事件修饰符详解

    整体学习Vue时看到Vue文档中有事件修饰符的描述,但是看了之后并没有理解是什么意思,于是查阅了资料,现在记录下来与大家分享 先给大家画一个示意图理解一下冒泡和捕获 (1) .stop修饰符 请看如下 ...

  3. chapter01作业

    1. 请用命令查出ifconfig命令程序的绝对路径 [root@localhost chen]# which ifconfig /usr/sbin/ifconfig 2.请用命令展示以下命令哪些是内 ...

  4. 多线程编程(Linux C)

    多线程编程可以说每个程序员的基本功,同时也是开发中的难点之一,本文以Linux C为例,讲述了线程的创建及常用的几种线程同步的方式,最后对多线程编程进行了总结与思考并给出代码示例. 一.创建线程 多线 ...

  5. 【React踩坑记四】React项目中引入并使用js-xlsx上传插件(结合antdesign的上传组件)

    最近有一个前端上传并解析excel/csv表格数据的需求. 于是在github上找到一个14K star的前端解析插件 github传送门 官方也有,奈何实在太过于浅薄.于是做了以下整理,避免道友们少 ...

  6. ieda控制台缓冲区限制问题

    一.现象 控制台输出数据若超过默认值时,将从后向前取默认值大小数据(1024) 二.解决方案 1.配置文件(idea安装目录/bin/idea.properties) 2.找到该栏:idea.cycl ...

  7. Springmvc的运行原理 SpringMvc的优点

    SpringMVC框架运行原理 1:客户端发送请求到前端控制器(DispatcherServlet),前端控制器根据请求信息(url),查询一个或多个HandlerMapping, 前端控制器,来决定 ...

  8. 如何获取app中的toast

    前言 Toast是什么呢?在这个手机飞速发展的时代,app的种类也越来越多,那们在日常生活使用中,经常会发现,当你在某个app的输入框输入非法字符或者非法执行某个流程时,经常看到系统会给你弹出一个黑色 ...

  9. 带你剖析WebGis的世界奥秘----点和线的世界

    前言 昨天写了好久的博文我没保存,今天在来想继续写居然没了,气死人啊这种情况你们见到过没,所以今天重新写,我还是切换到了HTML格式的书写上.废话不多说了,我们现在就进入主题,上周我仔细研究了WebG ...

  10. JMM浅析

    背景 学习Java并发编程,JMM是绕不过的槛.在Java规范里面指出了JMM是一个比较开拓性的尝试,是一种试图定义一个一致的.跨平台的内存模型.JMM的最初目的,就是为了能够支多线程程序设计的,每个 ...