H.264组成

  • 1、网络提取层 (Network Abstraction Layer,NAL)
  • 2、视讯编码层 (Video Coding Layer,VCL)
  • a.H.264/AVC影像格式阶层架构
  • b.Slice的编码模式
    (1) I -slice: slice的全部MB都采用intra-prediction的方式来编码;
    (2) P-slice: slice中的MB使用intra-prediction和inter-prediction的方式来编码,但每一个inter-prediction block最多只能使用一个移动向量;
    (3) B-slice:与P-slice类似,但每一个inter-prediction block可以使用二个移动向量。B-slice的‘B’是指Bi-predictive(双向预测),除了可由前一张和后一张影像的I(或P、B)-slice外,也能从前二张不同影像的I(或P、B)-slice来做inter- prediction。
    (4) SP-slice:即所谓的Switching P slice,为P-slice的一种特殊类型,用来串接两个不同bitrate的bitstream;
    (5) SI-slice: 即所谓的Switching I slice,为I-slice的一种特殊类型,除了用来串接两个不同content的bitstream外,也可用来执行随机存取(random access)来达到网络VCR的功能
  • c、画面内预测技术(Intra-frame Prediction)
  • d、画面间预测技术(Inter-frame Prediction)

H.264介绍

码流结构

H.264的功能分为两层,视频编码层(VCL)和网络提取层(NAL)VCL数据即被压缩编码后的视频数据序列。在VCL数据要封装到NAL单元中之后,才可以用来传输或存储。

 
NALU (Network Abstraction Layer Unit )
  • SPS:序列参数集,作用于一系列连续的编码图像;
  • PSS:图像参数集,作用于编码视频序列中一个或多个独立的图像;

参数集是一个独立的数据单位,不依赖于参数集外的其他句法元素。一个参数集不对应某一个特定的图像或序列,同一序列参数集可以被多个图像参数集引用,同理,同一个图像参数集也可以被多个图像引用。只在编码器认为需要更新参数集的内容时,才会发出新的参数集。

NALU根据nal_unit_type的类型,可以分为:VCL的NAL单元和非VCL的NAL单元,详情如下:

 
 
 
官方文档

码流结构

iOS与H.264

1、视频相关的框架

由上到下:

  • AVKit
  • AVFoundation
  • Video Toolbox
  • Core Media
  • Core Video

其中的AVKit和AVFoudation、VideoToolbox都是使用硬编码和硬解码

2、相关类介绍

  • CVPixelBuffer: 包含未压缩的像素数据,包括图像宽度、高度等;
  • CVPixelBufferPool: CVPixelBuffer的缓冲池,因为CVPixelBuffer的创建和销毁代价很大;
  • pixelBufferAttributes: CFDictionary包括宽高、像素格式(RGBA、YUV)、使用场景(OpenGL ES、Core Animation)
  • CMTime: 64位的value,32位的scale,media的时间格式;
  • CMVideoFormatDescription: video的格式,包括宽高、颜色空间、编码格式等;对于H.264的视频,PPS和SPS的数据也在这里;
  • CMBlockBuffer:未压缩的图像数据;
  • CMSampleBuffer: 存放一个或者多个压缩或未压缩的媒体文件;
  • CMClock:时间源

A timing source object.

  • CMTimebase:时间控制器,可以设置rate和time;

A timebase represents a timeline that clients can control by setting the rate and time. Each timebase has either a master clock or a master timebase. The rate of the timebase is expressed relative to its master.

CMSampleBuffer的结构:

 
可以包含已压缩数据(CMBlockBuffer)或未压缩数据(CVPixelBuffer)及相关描述信息

3、AVKit

使用AVSampleBufferDisplayLayer显示H.264码流

 
 
  • 初始化
self.videoLayer = [[AVSampleBufferDisplayLayer alloc] init];
self.videoLayer.bounds = self.bounds;
self.videoLayer.position = CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
self.videoLayer.videoGravity = AVLayerVideoGravityResizeAspect;
self.videoLayer.backgroundColor = [[UIColor greenColor] CGColor];
//set Timebase
CMTimebaseRef controlTimebase;
CMTimebaseCreateWithMasterClock( CFAllocatorGetDefault(), CMClockGetHostTimeClock(), &controlTimebase );
self.videoLayer.controlTimebase = controlTimebase;
CMTimebaseSetTime(self.videoLayer.controlTimebase, CMTimeMake(5, 1));
CMTimebaseSetRate(self.videoLayer.controlTimebase, 1.0);
// connecting the videolayer with the view
[[self layer] addSublayer:_videoLayer];
  • 传入SampleBuffer
__block AVAssetReaderTrackOutput *outVideo = [AVAssetReaderTrackOutput assetReaderTrackOutputWithTrack:video outputSettings:dic];
if( [assetReaderVideo startReading] )
{
[_videoLayer requestMediaDataWhenReadyOnQueue: assetQueue usingBlock: ^{
while( [_videoLayer isReadyForMoreMediaData] )
{
CMSampleBufferRef *sampleVideo = [outVideo copyNextSampleBuffer];
[_videoLayer enqueueSampleBuffer:sampleVideo.data];
}
}];
}

4、MPEG-4封装的H.264码流格式

H.264的原始码流 与 MPEG-4封装的H.264码流格式不同在于:

  • SPS和PPS被统一
    需要用CMVideoFormatDescriptionCreateFromH264ParameterSets方法 ,统一PPS和SPS

     
     
  • 头字节表示帧的长度
    (原来的为00 00 01 或者 00 00 00 01)

     
     

当我们需要原始H.264码流包装成CMSampleBuffer时,我们可以按照以下步骤:
1、替换头字节长度;
2、用CMBlockBuffer把NALUnit包装起来;
3、把SPS和PPS包装成CMVideoFormatDescription;
4、添加CMTime时间;
5、创建CMSampleBuffer;

 
根据H.264原始码流创建CMSampleBuffer

当我们需要更新SPS和PPS的时候,调用
VTDecompressionSessionCanAcceptFormatDescription判断是否能接受新的SPS和PPS;
如果不能接受,那么需要新建session来处理frame,注意销毁原来的session;

 
更新SPS和PPS

5、采集摄像头数据

从摄像头采集数据,并用AVAssetWriter写入movieFile

 
摄像头采集并写入movieFile

从摄像头采集数据,并VideoToolbox硬编码,获取压缩后的码流

  • 按照显示顺序来,添加显示时间;
  • 时间只能加不能减,不能重复;
  • 异步的请求;(H.264的帧间预测)
  • 没有帧之后需要调用complete;

压缩后的码流是MPEG-4封装格式下的码流,要转换成原始码流的格式。
调用CMVideoFormatDescriptionGetH264ParameterSetAtIndex
获取视频的PPS和SPS

 
摄像头采集并生成H.264码流

6、Single-Pass和Multi-Pass编码

  • Single-Pass编码

     
     
  • Multi-Pass编码

     
     

AVAssetExportSession 优先采用多通道编码,不行再使用单通道编码;
Multi-passes的介绍

其他零碎的知识

视频码率是视频数据(视频色彩量、亮度量、像素量)每秒输出的位数。一般用的单位是kbps。
由于不同的系统会有不同的模式,为了统一,规定在网络传输中使用大端模式,这就是网络字节序
RTP协议:实时传送协议(Real-time Transport Protocol或简写RTP,也可以写成RTTP)是一个网络传输协议。RTP协议详细说明了在互联网上传递音频和视频的标准数据包格式。
RTCP协议:实时传输控制协议(Real-time Transport Control Protocol或RTP Control Protocol或简写RTCP)是实时传输协议(RTP)的一个姐妹协议。
RTSP协议:RTSP(Real Time Streaming Protocol)是用来控制声音或影像的多媒体串流协议。

RTSP发起/终结流媒体、RTP传输流媒体数据 、RTCP对RTP进行控制,同步。

RTMP协议:RTMP(the Real-time Messaging Protocol)协议作为客户端和服务器端的传输协议,这是一个专门为高效传输视频、音频和数据而设计的 TCP/IP 协议。
HLS协议: HTTP Live Streaming(HLS)是苹果公司(Apple Inc.)实现的基于HTTP的流媒体传输协议。

RTP封包H.264码流
各种协议

总结

如果想更深入学习,可以看H.264标准中文版的文档。

链接:https://www.jianshu.com/p/8de09a551a66

02:H.264学习笔记的更多相关文章

  1. H.264学习笔记5——熵编码之CAVLC

    H.264中,4x4的像素块经过变换和量化之后,低频信号集中在左上角,大量高频信号集中在右下角.左边的低频信号相对数值较大,而右下角的大量高频信号都被量化成0.1和-1:变换量化后的残差信息有一定的统 ...

  2. H.264学习笔记1——相关概念

    此处记录学习AVC过程中的一些基本概念,不定时更新. frame:帧,相当于一幅图像,包含一个亮度矩阵和两个色度矩阵. field:场,一帧图像,通过隔行扫描得到奇偶两场,分别称为顶场和底场或奇场和偶 ...

  3. H.264学习笔记之一(层次结构,NAL,SPS)

    一 H.264句法 1.1元素分层结构 H.264编码器输出的Bit流中,每个Bit都隶属于某个句法元素.句法元素被组织成有层次的结构,分别描述各个层次的信息. 图1 H.264分层结构由五层组成,分 ...

  4. H.264学习笔记

    1.帧和场的概念 视频的一场或一帧可用来产生一个编码图像.通常,视频帧可以分成两种类型:连续或隔行视频帧.我们平常看的电视是每秒25帧,即每秒更换25个图像,由于视觉暂留效应,所以人眼不会感到闪烁.每 ...

  5. H.264学习笔记6——指数哥伦布编码

    一.哥伦布码 哥伦布码就是将编码对象分能成等间隔的若干区间(Group),每个Group有一个索引值:Group Id. >对于Group Id采用二元码编码: >对于Group内的编码对 ...

  6. H.264学习笔记4——变换量化

    A.变换量化过程总体介绍 经过帧内(16x16和4x4亮度.8x8色度)和帧间(4x4~16x16亮度.4x4~8x8色度)像素块预测之后,得到预测块的残差,为了压缩残差信息的统计冗余,需要对残差数据 ...

  7. H.264学习笔记3——帧间预测

    帧间预测主要包括运动估计(运动搜索方法.运动估计准则.亚像素插值和运动矢量估计)和运动补偿. 对于H.264,是对16x16的亮度块和8x8的色度块进行帧间预测编码. A.树状结构分块 H.264的宏 ...

  8. H.264学习笔记2——帧内预测

    帧内预测:根据经过反量化和反变换(没有进行去块效应)之后的同一条带内的块进行预测. A.4x4亮度块预测: 用到的像素和预测方向如图: a~f是4x4块中要预测的像素值,A~Q是临块中解码后的参考值. ...

  9. 每天进步一点点------H.264学习 (一)

    分三个阶段学习1.第一个阶段: 学习H.264,首先要把最基本最必要的资料拿在手里.这些资料包括:标准文档+测试模型+经典文章,在本FTP中能找到.首先看 <H.264_MPEG-4 Part ...

随机推荐

  1. Linux--shell数组和字符串--09

    一.数组 数组就是一段连续的变量,一段连续的内存存储空间,为了解决变量过多的问题,在同一类变量中,我们不需要去定义多个名字,而是以数组的方式来定义 1.定义数组 declare -a 定义数组 dec ...

  2. nodejs简单抓包工具

    就是简简单单写程序的我为什么需要抓包? 其实在平时写demo的时候需要用到一些图片和文本的资源的,但是需求量比较大,这个时候就想去网站上面直接复制啊,然后图片另存为啊,什么的一系列繁琐的操作. 但是现 ...

  3. 多线程之pthread, NSThread, NSOperation, GCD

    关于多线程会有一系列如下:多线程之概念解析 多线程之pthread, NSThread, NSOperation, GCD 多线程之NSThread 多线程之NSOperation 多线程之GCD p ...

  4. Flutter学习笔记(23)--多个子元素的布局Widget(Rwo、Column、Stack、IndexedStack、Table、Wrap)

    如需转载,请注明出处:Flutter学习笔记(23)--多个子元素的布局Widget(Rwo.Column.Stack.IndexedStack.Table.Wrap) 上一篇梳理了拥有单个子元素布局 ...

  5. Linux应用开发自学之路

    前言 在 「关于我 」那篇博文里,朋友们应该知道了我不是科班出身,是由机械强行转行到Linux应用开发方向.下面我就详细向大家介绍自己这一路上的转行历程,希望对大家有所启发. 我是学机械专业的,对于机 ...

  6. CTPN

    1. https://zhuanlan.zhihu.com/p/34757009  (原理) 2. https://www.jianshu.com/p/471bdbd0170d (bi-LSTM)

  7. [UWP]占领标题栏

    1. 前言 每一个有理想的UWP应用都会打标题栏的注意,尤其当微软提供 将 Acrylic 扩展到标题栏 这个功能后,大部分Windows 10的原生应用都不乖了,纷纷占领了标题栏的一亩三分地.这篇博 ...

  8. AC自动机 数组实现

    AC自动机的实现原理是KMP + 字典树. 学AC自动机之前要先去学KMP 和 字典树. 第一步先构建一个字典树. void Insert(){ , len = strlen(str); ; i &l ...

  9. 2019 HZNU Winter Training Day 14 Comprehensive Training

    A - Choosing Capital for Treeland CodeForces - 219D 题意:有一颗单向边的树,要选取一个结点作为首都.要求是这个结点到其它结点,总共需要翻转的路径数量 ...

  10. poj3666 Making the Grade(基础dp + 离散化)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...