【agc028E】High Elements(动态规划,线段树,贪心)

题面

AtCoder

你有一个\([1,N]\)的排列\(P\)。

一个长度为\(N\)的字符串\(S\)是好的,当且仅当:

  • 两个序列\(X,Y\)这样构造:

    一开始,令\(X,Y\)都是空的。然后对于每一个\(i=1,2,...,N\),依次考虑每一个\(P_i\),如果\(S_i=0\),那么加入到\(X\)末尾,否则加入到\(Y\)末尾。
  • \(X,Y\)的前缀最大值的个数相等。

现在你要求出一个字典序最小的\(S\)。

题解

显然考虑贪心,只要能够放\(0\)我们就会尽可能的放\(0\),。

首先来证明一个结论,如果一个\(S\)合法,那么必定能够使得\(X,Y\)两个数列中,有一个数列中的前缀最大值全是排列\(P\)中的前缀最大值。

这样子考虑,如果两个数列中都存在不是原本前缀最大值的位置,那么交换这两个位置,因为它们原本不是最大值,现在变成了前缀最大值,意味着前缀中比它大并且在它前面的数一定在另外一个集合中,那么交换之后两个串的前缀最大值的个数都会减少\(1\),那么经过若干次交换之后一定能够使得一个集合中的前缀最大值全是\(P\)中的前缀最大值。

那么我们不妨令\(X\)由原串的前缀最大值构成。

我们假设前\(i-1\)位已经构造完毕,现在考虑第\(i\)位可以放哪里。我们先强制放到一个位置,然后来判断是否合法。

不妨令\(X\)中的前缀最大值个数是\(cnt_X\),\(Y\)中的前缀最大值个数为\(cnt_Y\)。

而\([i,n]\)在\(P\)中原本的前缀最大值的个数是\(Q\),而\(Y\)在接下来的数列中将会有\(k\)个最大值是\(P\)的前缀最大值,则\(X\)中会有\(Q-k\)个。再设\(Y\)中非\(P\)的前缀最大值的前缀最大值个数为\(m\),则要满足条件:

\[cnt_X+(Q-k)=cnt_Y+k+m
\]

化简后得到:

\[2k+m=cnt_X+Q-cnt_Y
\]

其中右边是已知的常量了。

不难发现这个东西就是在搭配\(Y\)的数列,那么把\(P\)中的前缀最大值看成\(2\),其他的值看成\(1\),于是问题变成了我们要在后面找出一个序列,使得其前缀最大值的前缀和是右边的常数。因为如果能够令左边的值为\(x\)的话,那么必定能够得到\(x-2\)(删掉一段后缀一定可以做到)。所以我们只要维护\(x\)为奇数和偶数时能够取到的最大值。

同理也可以反过来,变成搭配\(X\)的数列,一样的进行一次查询。

设\(f[i][0/1]\)表示以\(i\)开头的,权值为偶数/奇数的最大值,转移的时候可以从一段区间转移过来,每次就是区间询问,单点修改,用线段树维护即可。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 200200
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,a[MAX],val[MAX],cnt[MAX];
char s[MAX];
struct SegmentTree
{
#define lson (now<<1)
#define rson (now<<1|1)
int t[MAX<<2];
void Build(int now,int l,int r)
{
if(l==r){t[now]=1-1e9;return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=max(t[lson],t[rson]);
}
void Modify(int now,int l,int r,int p,int w)
{
if(l==r){t[now]=w;return;}
int mid=(l+r)>>1;
if(p<=mid)Modify(lson,l,mid,p,w);
else Modify(rson,mid+1,r,p,w);
t[now]=max(t[lson],t[rson]);
}
int Query(int now,int l,int r,int L,int R)
{
if(L<=l&&r<=R)return t[now];
int mid=(l+r)>>1,ret=-1e9;
if(L<=mid)ret=max(ret,Query(lson,l,mid,L,R));
if(R>mid)ret=max(ret,Query(rson,mid+1,r,L,R));
return ret;
}
}Odd,Even;
bool check(int mx,int Q)
{
if(Q<0)return false;
if(Q&1)return Odd.Query(1,1,n,mx,n)>=Q;
else return Even.Query(1,1,n,mx,n)>=Q;
}
int main()
{
n=read();
for(int i=1,mx=0;i<=n;++i)
{
a[i]=read();
if(a[i]>mx)val[i]=2,mx=a[i];
else val[i]=1;
}
Odd.Build(1,1,n);
for(int i=n;i;--i)
{
int mx1=Odd.Query(1,1,n,a[i],n),mx0=Even.Query(1,1,n,a[i],n);
if(val[i]&1)Odd.Modify(1,1,n,a[i],mx0+val[i]),Even.Modify(1,1,n,a[i],mx1+val[i]);
else Odd.Modify(1,1,n,a[i],mx1+val[i]),Even.Modify(1,1,n,a[i],mx0+val[i]);
}
for(int i=n;i;--i)cnt[i]=cnt[i+1]+val[i]-1;
int cntX=0,cntY=0,mxX=0,mxY=0;
for(int i=1;i<=n;++i)
{
Odd.Modify(1,1,n,a[i],1-1e9);Even.Modify(1,1,n,a[i],0);
if(check(mxY,cntX+cnt[i+1]-cntY+(a[i]>mxX)))s[i]='0',cntX+=a[i]>mxX,mxX=max(mxX,a[i]);
else if(check(max(mxX,a[i]),cntY+cnt[i+1]-cntX-(a[i]>mxX)))s[i]='0',cntX+=a[i]>mxX,mxX=max(mxX,a[i]);
else s[i]='1',cntY+=a[i]>mxY,mxY=max(mxY,a[i]);
}
if(cntX!=cntY){puts("-1");}
else printf("%s",s+1);
return 0;
}

【agc028E】High Elements(动态规划,线段树,贪心)的更多相关文章

  1. BZOJ_1826_[JSOI2010]缓存交换 _线段树+贪心

    BZOJ_1826_[JSOI2010]缓存交换 _线段树+贪心 Description 在计算机中,CPU只能和高速缓存Cache直接交换数据.当所需的内存单元不在Cache中时,则需要从主存里把数 ...

  2. BZOJ_1672_[Usaco2005 Dec]Cleaning Shifts 清理牛棚_动态规划+线段树

    BZOJ_1672_[Usaco2005 Dec]Cleaning Shifts 清理牛棚_动态规划+线段树 题意:  约翰的奶牛们从小娇生惯养,她们无法容忍牛棚里的任何脏东西.约翰发现,如果要使这群 ...

  3. Bzoj5251 线段树+贪心

    Bzoj5251 线段树+贪心 记录本蒟蒻省选后的第一篇题解!国际惯例的题面:首先这个东西显然是一棵树.如果我们把数值排序,并建立这棵树的dfs序,显然dfs序上的一个区间对应数值的一个区间,且根为数 ...

  4. 2018.10.20 NOIP模拟 蛋糕(线段树+贪心/lis)

    传送门 听说是最长反链衍生出的对偶定理就能秒了. 本蒟蒻直接用线段树模拟维护的. 对于第一维排序. 维护第二维的偏序关系可以借助线段树/树状数组维护逆序对的思想建立权值线段树贪心求解. 代码

  5. 2019牛客多校第一场 I Points Division(动态规划+线段树)

    2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...

  6. codeforces 675E Trains and Statistic 线段树+贪心统计

    分析:这个题刚看起来无从下手 但是我们可以先简化问题,首先可以固定起点i,求出i+1到n的最小距离 它可以到达的范围是[i+1,a[i]],贪心的想,我们希望换一次车可以到达的距离尽量远 即:找一个k ...

  7. BZOJ1805[Ioi2007]Sail船帆——线段树+贪心

    题目描述 让我们来建造一艘新的海盗船.船上有 N个旗杆,每根旗杆被分成单位长度的小节.旗杆的长度等于它被分成的小节的数目.每根旗杆上会挂一些帆,每张帆正好占据旗杆上的一个小节.在一根旗杆上的帆可以任意 ...

  8. BZOJ5249 九省联考2018IIIDX(线段树+贪心)

    显然这形成了一个树形结构.考虑这样一种贪心:按照曲目顺序,每次取消其父亲的预留,并选择当前可选择(保证其子树有合法选择且满足预留)的最大值,然后对其子树预留出大于等于他的一些值.这个做法显然是正确的. ...

  9. Codeforces 834D The Bakery - 动态规划 - 线段树

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  10. BZOJ5249: [2018多省省队联测]IIIDX(线段树 贪心)

    题意 题目链接 Sol 不难发现题目给出的是一个树,其中\(\frac{i}{K}\)是\(i\)的父亲节点 首先,当\(d_i\)互不相同时,一个显然的贪心策略就是优先给编号小的分配较大的权值.可以 ...

随机推荐

  1. [CodeForces - 1225D]Power Products 【数论】 【分解质因数】

    [CodeForces - 1225D]Power Products [数论] [分解质因数] 标签:题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory ...

  2. [考试反思]1112csp-s模拟测试112:二返

    连着两场... 信心赛.但是题锅了,我也锅了. 然后Day2就不用考了. T1没开够long long.(a+b+c+0ll)与(0ll+a+b+c)还是有一点区别的. T2出题人用Windows出数 ...

  3. win10系统怎么设置软件开机启动

    win10开机自动启动软件设置教程: 1:在windows10桌面,右键点击桌面左下角的开始按钮,在弹出的菜单中选择运行菜单项. 2:这时就会打开windows10的运行窗口,在窗口中输入命令shel ...

  4. Python中容易忽视的知识点

    今天坐在实验室,觉得有点无聊,想了下,很久没写博客了,就来写一点,正好遇到了一个有意思的小问题,分享给大家. 首先我们通过一个小的实验来看一下内容: 不管是 Python2 还是 Python3 环境 ...

  5. Cannot load connection class because of underlying exception: com.mysql.cj.exceptions.WrongArgumentException: Malformed database URL, failed to parse the connection string near ';characterEncoding=UTF

    今天在使用springboot整合SSM的时候,配置好以后启动项目,报了一个这样的异常 java.sql.SQLNonTransientConnectionException: Cannot load ...

  6. 案例:Oracle 10g RAC 集群无法启动

    环境:RHEL 5.7 + Oracle 10.2.0.5 RAC 很多年前的一套测试环境,今天发现集群无法启动.手工尝试启动crs,集群日志也无任何输出.进一步检查集群配置: [oracle@rac ...

  7. TortoiseSVN 无法查看日志 日期显示1970-01-01的解决方案

    对有问题的目录, 在右键菜单中, 使用 TortoiseSVN 的 Revision Graph 命令, 等待该命令执行完毕, 再重新使用 Show Log 命令, 即可查看日志了

  8. JavaScript 字符串是否包含某个字符串

    字符串方式 indexOf()   (推荐) var str = "123"; console.log(str.indexOf("3") != -1 ); // ...

  9. .netcore控制台->定时任务Quartz

    之前做数据同步时,用过timer.window服务,现在不用那么费事了,可以使用Quartz,并且配置灵活,使用cron表达式配置XML就可以.我用的是3.0.7版本支持.netcore. 首先创建一 ...

  10. MD5是个好东西 / MD5 is a nice guy

    md5是一种摘要生成算法,通过对消息生成唯一摘要,可校验消息是否被篡改. 众所周知,md5广泛用在http接口通讯的安全控制上,通过在签名原始串后加上商户通信秘钥,进行MD5运算,形成的摘要字符串即为 ...