题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1385

参考 http://blog.csdn.net/shuangde800/article/details/8075165

题目大意:

有N个城市,然后直接给出这些城市之间的邻接矩阵,矩阵中-1代表那两个城市无道路相连,其他值代表路径长度。

如果一辆汽车经过某个城市,必须要交一定的钱(可能是过路费)。

现在要从a城到b城,花费为路径长度之和,再加上除起点与终点外所有城市的过路费之和。

求最小花费,如果有多条路经符合,则输出字典序最小的路径。

解析:

直接跑一边Floyd算法就好    用一个二维数组保存路径path[ i ][ j ]表示第i个节点到第j个节点经过的第一个点(例如1->2->5->4,path[1][4]=2,path[2][4]=5,path[5][4]=5)

AC代码

 #include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <string>
#include <queue>
#include <map>
#include <vector>
using namespace std;
const int maxn = ;
const int maxm = 1e4+;
const int inf = 0x3f3f3f3f;
const double epx = 1e-;
typedef long long ll;
int n;
int w[maxn][maxn];
int path[maxn][maxn];
int tax[maxn];
void init()
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(i!=j)
w[i][j]=inf;
else
w[i][j]=; //自己到自己设为0
path[i][j]=j;    //初始化为j
}
}
}
void Floyd()
{
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(w[i][k]!=inf&&w[k][j]!=inf)
{
int temp=w[i][k]+w[k][j]+tax[k]; //tax[]是过路费
if(w[i][j]>temp) //松弛操作的时候,顺带更新路径
{
w[i][j]=temp;
path[i][j]=path[i][k];
}
else if(w[i][j]==temp&&path[i][j]>path[i][k])//字典序最小,不要求字典序的话可直接省略
{
path[i][j]=path[i][k];
}
}
}
int main()
{
while(cin>>n&&n)
{
init();
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
cin>>w[i][j];
if(w[i][j]==-)
w[i][j]=inf;
}
}
for(int i=;i<=n;i++)
cin>>tax[i];
Floyd();
int s,e;
while(cin>>s>>e&&s!=-&&e!=-)
{
printf("From %d to %d :\n",s,e);
printf("Path: ");
int u=s;
printf("%d",u); //打印路径
while(u!=e)
{
printf("-->%d",path[u][e]);
u=path[u][e];
}
printf("\n");
printf("Total cost : %d\n\n",w[s][e]);
} }
}

Floyd算法——保存路径——输出路径 HDU1385的更多相关文章

  1. Floyd算法并输出路径

    hdu1224 Free DIY Tour Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  2. SPFA和FLOYD算法如何打印路径

    早晨碰到了一题挺裸的最短路问题需要打印路径:vijos1635 1.首先说说spfa的方法: 其实自己之前打的最多的spfa是在网格上的那种,也就是二维的 一维的需要邻接表+queue 以及对于que ...

  3. ZOJ 1456 Minimum Transport Cost(Floyd算法求解最短路径并输出最小字典序路径)

    题目链接: https://vjudge.net/problem/ZOJ-1456 These are N cities in Spring country. Between each pair of ...

  4. Floyd最短路(带路径输出)

    摘要(以下内容来自百度) Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似. 该算法名称以创始人之一.1978年图灵奖获得者. ...

  5. URAL 1004 Sightseeing Trip(floyd求最小环+路径输出)

    https://vjudge.net/problem/URAL-1004 题意:求路径最小的环(至少三个点),并且输出路径. 思路: 一开始INF开大了...无限wa,原来相加时会爆int... 路径 ...

  6. [Python] 弗洛伊德(Floyd)算法求图的直径并记录路径

    相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两 ...

  7. Codefroces Gym101572 I.Import Spaghetti-有向图跑最小环输出路径(Floyd)

    暑假学的很多东西,现在都忘了,补这道题还要重新学一下floyd,有点难过,我暑假学的东西呢??? 好了,淡定,开始写题解. 这个题我是真的很难过啊,输入简直是有毒啊(内心已经画圈诅咒出题人无数次了.. ...

  8. 最小路径算法(Dijkstra算法和Floyd算法)

    1.单源点的最短路径问题:给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径. 我们用一个例子来具体说明迪杰斯特拉算法的流程. 定义源点为 0,dist[i]为源点 0 到顶点 i 的最短路径 ...

  9. HD1385Minimum Transport Cost(Floyd + 输出路径)

    Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/O ...

随机推荐

  1. vue采坑及较好的文章汇总

    1:父子组件传动态传值 https://www.cnblogs.com/daiwenru/p/6694530.html  -----互传数据基本流程 https://blog.csdn.net/qq_ ...

  2. 安装CentOS--设置网络_1

    (1)在登录黑框中输入如下命令,让CentOS 7自动获取一个IP地址: # dhclient (2)正常情况下不会有任何输出内容.用如下命令查看获取到的IP地址: # ip addr 它将返回如图所 ...

  3. vue HTTP请求(针对vue-resource)

    //初始化页面需要做什么事情 //点击后需要做什么事情 //鼠标.键盘.冒泡.默认行为等事件 //前端调用接口就是按需展示数据//created和mounted里面都可以做数据处理,唯一不同的是cre ...

  4. 计算机网络、OSI模型、TCP/IP族

    一.计算机网络分类 1.按通信距离分类: 局域网:LAN,10m-1000m,房间.校园: 城域网:MAN,10km,城市: 广域网:WAN,100km以上,国家.全球. 二.OSI(Open Sys ...

  5. jquery 点击切换div

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. Go语言 之产生随机数

    package main import ( "fmt" "math/rand" "strconv" "time" ) f ...

  7. pytorch: Variable detach 与 detach_

    pytorch 的 Variable 对象中有两个方法,detach和 detach_ 本文主要介绍这两个方法的效果和 能用这两个方法干什么. detach 官方文档中,对这个方法是这么介绍的. 返回 ...

  8. 色码表 Color code table

    最近打算更新设计博客页面,需要用到CSS色码表,查了一些资料现转载此处以备以后使用,点击此处查看原文,另外还发现了几个不错的网站: color-hex HTML颜色代码 色碼表 色碼表英文為 Colo ...

  9. Try, throw和catch用法

    PHP 5 提供了一种新的面向对象的错误处理方法. 使用思路如下: 1.Try - 使用异常的函数应该位于 "try" 代码块内.如果没有触发异常,则代码将照常继续执行.但是如果异 ...

  10. [Python3网络爬虫开发实战] 1.3.3-pyquery的安装

    pyquery同样是一个强大的网页解析工具,它提供了和jQuery类似的语法来解析HTML文档,支持CSS选择器,使用非常方便.本节中,我们就来了解一下它的安装方式. 1. 相关链接 GitHub:h ...