无论是训练机器学习或是深度学习,第一步当然是先划分数据集啦,今天小白整理了一些划分数据集的方法,希望大佬们多多指教啊,嘻嘻~

首先看一下数据集的样子,flower_data文件夹下有四个文件夹,每个文件夹表示一种花的类别

  

划分数据集的主要步骤:

1. 定义一个空字典,用来存放各个类别的训练集、测试集和验证集,字典的key是类别,value也是一个字典,存放该类别的训练集、测试集和验证集;

2.使用python获取所有的类别文件夹;

3.对每个类别划分训练集、测试集和验证集:(1)把该类别的所有有效图片放入一个列表中;(2)设置一个随机数对列表进行划分。

具体的代码实现如下所示

import glob
import os.path
import random
import numpy as np
# 图片数据文件夹
INPUT_DATA = './flower_data'
# 这个函数从数据文件夹中读取所有的图片列表并按训练、验证、测试数据分开
# testing_percentage和validation_percentage指定了测试数据集和验证数据集的大小
def create_image_lists(testing_percentage,validation_percentage):
# 得到的所有图片都存在result这个字典里,key为类别的名称,value值也是一个字典,存放的是该类别的
# 文件名、训练集、测试集和验证集
result = {}
# 获取当前目录下所有的子目录,这里x 是一个三元组(root,dirs,files),第一个元素表示INPUT_DATA当前目录,
# 第二个元素表示当前目录下的所有子目录,第三个元素表示当前目录下的所有的文件
sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
# sub_dirs = ['./flower_data','./flower_data\\daisy','./flower_data\\dandelion',
# './flower_data\\roses','./flower_data\\sunflowers','./flower_data\\tulips']
# 每个子目录表示一类花,现在对每类花划分训练集、测试集和验证集
# sub_dirs[0]表示当前文件夹本身的地址,不予考虑,只考虑他的子目录(各个类别的花)
for sub_dir in sub_dirs[1:]:
# 获取当前目录下所有的有效图片文件
extensions = ['jpg','jpeg']
# 把图片存放在file_list列表里
file_list = []
# os.path.basename(sub_dir)返回sub_sir最后的文件名
# 如os.path.basename('./flower_data/daisy')返回daisy
dir_name = os.path.basename(sub_dir)
for extension in extensions:
file_glob = os.path.join(INPUT_DATA,dir_name,'*.'+extension)
# glob.glob(file_glob)获取指定目录下的所有图片,存放在file_list中
file_list.extend(glob.glob(file_glob))
if not file_list: continue
# 通过目录名获取类别的名称,返回将字符串中所有大写字符转换为小写后生成的字符串
label_name = dir_name.lower()
# 初始化当前类别的训练数据集、测试数据集和验证数据集
training_images = []
testing_images = []
validation_images = []
for file_name in file_list:
base_name = os.path.basename(file_name)
# 随机将数据分到训练数据集、测试数据集和验证数据集
# 产生一个随机数,最大值为100
chance = np.random.randint(100)
if chance < validation_percentage:
validation_images.append(base_name)
elif chance < (testing_percentage+validation_percentage):
testing_images.append(base_name)
else:
training_images.append(base_name)
# 将当前类别是数据放入结果字典
result[label_name]={'dir':dir_name,
'training':training_images,
'testing':testing_images,
'validation':validation_images}
# 返回整理好的所有数据
return result
result = create_image_lists(10,30)
print(result)

运行结果:

可以看出字典result中有五个key,表示五个类别。

下图是各个类别的划分情况:

使用python划分数据集的更多相关文章

  1. Pytorch划分数据集的方法

    之前用过sklearn提供的划分数据集的函数,觉得超级方便.但是在使用TensorFlow和Pytorch的时候一直找不到类似的功能,之前搜索的关键字都是"pytorch split dat ...

  2. 【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 决策书算法是一种逼近离散数值的分类算法,思路比較简单,并且准确率较高.国际权威的学术组织,数据挖掘国际 ...

  3. 使用Sklearn-train_test_split 划分数据集

    使用sklearn.model_selection.train_test_split可以在数据集上随机划分出一定比例的训练集和测试集 1.使用形式为: from sklearn.model_selec ...

  4. sklearn 划分数据集。

    1.sklearn.model_selection.train_test_split随机划分训练集和测试集 函数原型: X_train,X_test, y_train, y_test =cross_v ...

  5. KNN手写实践:Python基于数据集整体计算以及排序

    1. 距离计算,不要通过遍历每个样本来计算和指定样本距离,而是通过对于指定样本进行广播(复制)成为一个shape和全局一致后,再进行整体计算,这里的广播 / 复制采用的是tile函数来实现的: 2. ...

  6. Python处理数据集-2

    原数据集的数据格式: 每行为:(test_User, test_Item) negativeItem1 negativeItem2 negativeItem3 …… negativeItem99 即每 ...

  7. Python处理数据集-1

    原数据集的数据格式: 每行为:(test_User, test_Item) negativeItem1 negativeItem2 negativeItem3 …… negativeItem99 即每 ...

  8. python 鸢尾花数据集报表展示

    import seaborn as snsimport pandas as pdimport matplotlib.pyplot as pltsns.set_style('white',{'font. ...

  9. pandas DataFrame 数据处理常用操作

    Xgboost调参: https://wuhuhu800.github.io/2018/02/28/XGboost_param_share/ https://blog.csdn.net/hx2017/ ...

随机推荐

  1. Linux shell 脚本中变量的数学计算【转】

    本文转载自:http://blog.csdn.net/qinghezhen/article/details/9194287 首先从一个例子说起: x=1+1 echo $x 你是不是期待着输出2啊?让 ...

  2. [原创]java读写word文档,完美解决方案

    做项目的过程中,经常需要把数据里里的数据读出来,经过加工,以word格式输出. 在网上找了很多解决方案都不太理想,偶尔发现了PageOffice,一个国产的Office插件,开发调用非常简单!比网上介 ...

  3. filter() 函数

    描述 filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表. 该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 Tru ...

  4. FluentData - 轻量级.NET ORM持久化技术解决方案

    官方地址:http://fluentdata.codeplex.com/ 官方教程:http://fluentdata.codeplex.com/documentation FluentData入门 ...

  5. ubuntu 怎么格式化U盘?(转载)

    转自:http://3168247.blog.51cto.com/3158247/605654 图形的话装一个gparted,找那个/dev/sdb,右击选择格式化,最后点“应用”.命令行:原则是先卸 ...

  6. 关于MYSQL编辑乱码问题

    今天在SQLyog中编写表数据时突然出现一个bug,在此记录分享一下. 使用MySQL数据库时,讲中文插入到数据苦衷进行刷新后全部都变成了乱码问号,如下图中studentName列: 产生乱码是因为没 ...

  7. bzoj 4916: 神犇和蒟蒻【欧拉函数+莫比乌斯函数+杜教筛】

    居然扒到了学长出的题 和3944差不多(?),虽然一眼看上去很可怕但是仔细观察发现,对于mu来讲,答案永远是1(对于带平方的,mu值为0,1除外),然后根据欧拉筛的原理,\( \sum_{i=1}^{ ...

  8. Go 使用自定义包(package)

    自定义包的分为两种: 1.同目录下的包: 2.不同目录下的包: *经测试,同目录下是不可以用不同包的文件的 同目录下的包: 不同文件中的变量和函数都可以直接访问 不同目录下的包: 1.把要在自定义包外 ...

  9. A - Supercentral Point CodeForces - 165A

    One day Vasya painted a Cartesian coordinate system on a piece of paper and marked some set of point ...

  10. SQL 初级教程学习(五)

    1.DEFAULT 约束用于向列中插入默认值. CREATE TABLE Orders(Id_O int NOT NULL,OrderNo int NOT NULL,Id_P int,OrderDat ...