#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cmath>
#include<iostream>
using namespace std; #define LL long long
LL n;
#define maxs 80
LL fac[maxs],num[maxs],lf=;
LL mul(LL a,LL b,LL p)
{
LL tmp=a,ans=;
while (b) {if (b&) ans=(ans+tmp)%p;tmp=(tmp+tmp)%p;b>>=;}
return ans;
}
LL random(LL x) {return (LL)((double)rand()/RAND_MAX*(x-)+0.5);}
LL f(LL x,LL c,LL p) {return (mul(x,x,p)+c)%p;}
LL gcd(LL a,LL b) {if (a<b) return gcd(b,a);return b?gcd(b,a%b):a;}
LL play(LL x,LL c)
{
LL a=random(x-)+,b=f(a,c,x),i=,k=;
if (a==b) return x;
while (++i)
{
LL sig=gcd(fabs(a-b),x);
if (sig> && sig<x) return sig;
b=f(b,c,x);
if (a==b) return x;
if (i==k) a=b,k<<=;
}
}
LL pow_mod(LL a,LL b,LL p)
{
LL tmp=a,ans=;
while (b) {if (b&) ans=mul(ans,tmp,p);tmp=mul(tmp,tmp,p);b>>=;}
return ans;
}
bool is_prime(LL x)
{
LL num=x-,k=;while (!(num&)) num>>=,k++;
for (int i=;i<=;i++)
{
LL t=random(x-)+,jud=pow_mod(t,num,x),now=jud;
for (int j=;j<=k;j++)
{
jud=mul(jud,jud,x);
if (jud== && now!= && now!=x-) return ;
now=jud;
}
if (jud!=) return ;
}
return ;
}
void rho(LL x,LL c)
{
if (x==) return;
if (is_prime(x)) {fac[++lf]=x;return;}
LL p=x,tmp=c;
while (p==x) p=play(x,tmp--);
rho(p,c);rho(x/p,c);
}
int main()
{
srand(time(NULL));
scanf("%lld",&n);
memset(fac,,sizeof(fac));
rho(n,);sort(fac+,fac++lf);num[]=;LL nlf=;
for (int i=;i<=lf;i++)
if (fac[i-]==fac[i]) num[nlf]++;
else num[++nlf]=,fac[nlf]=fac[i];
lf=nlf;
for (int i=;i<lf;i++) printf("%lld^%lld*",fac[i],num[i]);printf("%lld^%lld\n",fac[lf],num[lf]);
return ;
}

Pollard rho模板的更多相关文章

  1. POJ 1811 Prime Test (Pollard rho 大整数分解)

    题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...

  2. Miller-Rabin 素性测试 与 Pollard Rho 大整数分解

    \(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...

  3. Pollard Rho算法浅谈

    Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...

  4. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  5. 整数(质因子)分解(Pollard rho大整数分解)

    整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范 ...

  6. Pollard Rho因子分解算法

    有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Po ...

  7. Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法

    BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][ ...

  8. 初学Pollard Rho算法

    前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...

  9. 【Luogu】P4358密钥破解(Pollard Rho)

    题目链接 容易发现如果我们求出p和q这题就差不多快变成一个sb题了. 于是我们就用Pollard Rho算法进行大数分解. 至于这个算法的原理,emmm 其实也不是很清楚啦 #include<c ...

随机推荐

  1. AJPFX的反射学习笔记

    反射是描述 数据结构的结构        属性.方法(数据)元数据        类(数据结构)描述数据的结构-->类也是特殊的对象---->元数据        CLASS类 描述数据结 ...

  2. Spring Cloud Config 使用Bus的动态配置中心

    server端配置 POM文件 <dependency> <groupId>org.springframework.boot</groupId> <artif ...

  3. const和volatile

    const是只读变量 const修饰的变量是只读的,其本质还是变量 const修饰的局部变量在栈上分配空间 const修饰的全局变量在全局数据区分配空间 const只在编译期有用,在运行期无用 con ...

  4. whereis参数

    -b  只找二进制文件 -m 只找在帮助文件manual路径下的文件 -s 只找原文件 -u 没有帮助文件的文件 whereis passwd

  5. IE8 window.open 不支持此接口 的问题解决

    在使用vs2010调试代码时,突然出现 window.open 不支持此接口的提示,开始认为是不是vs的问题,后来上网查询说是系统问题.我不想重装系统,之后发现是IE的问题,使用其他浏览器浏览系统不会 ...

  6. Linux OpenGL 实践篇-10-framebuffer

    在之前的实践中我们都是在当前的窗口中渲染,即使用的缓存都是由glutCreateWindow时创建的缓存,我们可称之为默认缓存.它是唯一一个可以被图形服务器的显示系统识别的帧缓存,我们在屏幕上看到的只 ...

  7. C++_pthread read-write lock_读写锁_visual studio 2015下配置

    pthread下载地址:https://sourceware.org/pthreads-win32/ 1. 项目->属性->VC++目录 包含目录里添加:pthread所在路径\pthre ...

  8. ArrayList Vector LinkedList分析

    1.创建 ArrayList 的底层是一个数组.  ArrayList<String> list1 = new ArrayList<>(); list1.add("a ...

  9. Hystrix 断路器

    断路器: 当客户端访问服务端,发现服务端有异常不能进行访问时,就会执行一个fallback 方法.

  10. 获取Java接口的所有实现类

    获取Java接口的所有实现类 前言:想看基于spring 的最简单实现方法,请直接看 第七步. 本文价值在于 包扫描的原理探究和实现 一.背景 项目开发中,使用Netty做服务端,保持长连接与客户端( ...