传送门

#1032 : 最长回文子串

时间限制:1000ms
单点时限:1000ms
内存限制:64MB

描述

小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进。

这一天,他们遇到了一连串的字符串,于是小Hi就向小Ho提出了那个经典的问题:“小Ho,你能不能分别在这些字符串中找到它们每一个的最长回文子串呢?”

小Ho奇怪的问道:“什么叫做最长回文子串呢?”

小Hi回答道:“一个字符串中连续的一段就是这个字符串的子串,而回文串指的是12421这种从前往后读和从后往前读一模一样的字符串,所以最长回文子串的意思就是这个字符串中最长的身为回文串的子串啦~”

小Ho道:“原来如此!那么我该怎么得到这些字符串呢?我又应该怎么告诉你我所计算出的最长回文子串呢?

小Hi笑着说道:“这个很容易啦,你只需要写一个程序,先从标准输入读取一个整数N(N<=30),代表我给你的字符串的个数,然后接下来的就是我要给你的那N个字符串(字符串长度<=10^6)啦。而你要告诉我你的答案的话,只要将你计算出的最长回文子串的长度按照我给你的顺序依次输出到标准输出就可以了!你看这就是一个例子。”

提示一 提示二 提示三 提示四

样例输入
3
abababa
aaaabaa
acacdas
样例输出
7
5
3

题解:

Manacher算法--O(n)回文子串算法

直接转一个大牛的思路,讲的很好:

http://blog.csdn.net/ggggiqnypgjg/article/details/6645824/

http://acm.hust.edu.cn/vjudge/problem/viewSource.action?id=140283

结果:Accepted      提交时间:2015-05-07 14:11:06

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <stack>
#include <cctype>
#include <vector>
#include <cmath> #define ll long long using namespace std; const int M = ;
const int N = ;
const ll mod = ; int T;
char te[N];
char s[*N];
int p[*N];
int ans;
int l; void pre() //为了防止字符比较的时候越界,我在这个加了‘#’的字符串之前还加了另一个特殊字符‘$’,故我的新串下标是从1开始的
{
int l1=strlen(te);
l=*l1+;
s[]='$';
s[]='#';
for(int i=;i<l1;i++){
s[i*+]=te[i];
s[i*+]='#';
}
s[l]='\0';
} void Manacher()
{
int i,mx,id; //我们用mx记在i之前的回文串中,延伸至最右端的位置。同时用id这个变量记下取得这个最优mx时的id值。
mx=;
for(i=;i<l;i++){
if(mx>i){
p[i]=min(p[*id-i],mx-i);
}
else{
p[i]=;
}
for(;s[ i+p[i] ]==s[ i-p[i] ];p[i]++){
if(i+p[i]>mx){
mx=i+p[i];
id=i;
}
}
}
} int main()
{
//freopen("data.in","r",stdin);
scanf("%d",&T);
for(int ccnt=;ccnt<=T;ccnt++){
//while(scanf("%d%d",&a,&b) != EOF) {
scanf("%s",te);
pre();
Manacher();
int i;
ans=;
for(i=;i<l;i++){
ans=max(ans,p[i]-);
}
printf("%d\n",ans);
}
return ;
}

hihoCoder #1032 : 最长回文子串 [ Manacher算法--O(n)回文子串算法 ]的更多相关文章

  1. hihocoder #1032 : 最长回文子串 Manacher算法

    题目链接: https://hihocoder.com/problemset/problem/1032?sid=868170 最长回文子串 时间限制:1000ms内存限制:64MB 问题描述 小Hi和 ...

  2. hihocoder #1032 : 最长回文子串【 manacher算法实现 】

    #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...

  3. [hihoCoder] #1032 : 最长回文子串

    时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这 ...

  4. hihocoder 1032 最长回文子串(Manacher)

    传送门 #include<queue> #include<cmath> #include<cstdio> #include<cstring> #incl ...

  5. hiho #1032: 最长回文子串

    #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...

  6. 九度OJ 1528 最长回文子串 -- Manacher算法

    题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...

  7. 最长回文子串——manacher

    最长回文子串--Manacher 算法 (原版的博主的代码都是用py写的,这里改成c++) c++ 算法 字符串处理 0. 问题定义 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一 ...

  8. 最长回文子串 —— Manacher (马拉车) 算法

    最长回文子串 回文串就是原串和反转字符串相同的字符串.比如 aba,acca.前一个是奇数长度的回文串,后一个是偶数长度的回文串. 最长回文子串就是一个字符串的所有子串中,是回文串且长度最长的子串. ...

  9. 51nod1089 最长回文子串 manacher算法

    0. 问题定义 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一个字符串正着读和反着读是一样的,那它就是回文串.下面是一些回文串的实例: 12321 a aba abba aaaa ...

随机推荐

  1. 定时器、线程queue、进程池和线程池

    1.定时器 指定n秒后,执行任务 from threading import Timer,current_thread import os def hello(): print("%s he ...

  2. 用JS检测页面加载的不同阶段状态

    这可以通过用document.onreadystatechange的方法来监听状态改变, 然后用document.readyState == “complete”判断是否加载完成. 可以采用2个div ...

  3. PHP memcache扩展安装 for Windows

    一.下载并安装memcached服务器端软件    1.下载memcached软件 32位下载地址: memcached-win32-1.4.4-14.zip(直接下载),memcached-win3 ...

  4. android 图片叠加效果——两种方法的简介与内容 ,带解决Immutable bitmap passed to Canvas constructor错误

    第一种是通过canvas画出来的效果: public void first(View v) { // 防止出现Immutable bitmap passed to Canvas constructor ...

  5. COGS 942. [東方S3] 比那名居天子

    Problem 1 比那名居天子(tenshi.cpp/c/pas) 题目描述 在幻想乡,比那名居天子是管理着『要石』的天人.『要石』是能够引发和镇压地震的存在,当然也可以用来改变地形.因为在幻想乡引 ...

  6. Android(java)学习笔记163:开发一个多界面的应用程序之界面间数据传递

    1.界面跳转的数据传递 (1)intent.setData() --> intent.getData():     传递的数据比较简单,一般是文本类型的数据String:倘若我们传递的数据比较复 ...

  7. laravel扩展包服务提供者的注册的两种方式

    一. 包自动发现 在 Laravel 应用的配置文件 config/app.php 中,providers 配置项定义了一个会被 Laravel 加载的服务提供者列表.当安装完新的扩展包后,在老版本中 ...

  8. 20针,14针,10针JTAG引脚对应关系

    J-Link是常用的调试工具,用于程序的调试和下载.常用的J-Link的的接口有很多种,常见的有20针,14针和10针. J-Link可以使用JTAG方式下载调试程序,也可以使用SWD方式.从引脚方面 ...

  9. tomcat https协议

    一.tomcat证书 JDK自带的keytool工具来生成证书 1. 在jdk的安装目录\bin\keytool.exe下打开keytool.exe 2. 在命令行中输入以下命令: keytool - ...

  10. Vue 2.0 右键菜单组件 Vue Context Menu

    Vue 2.0 右键菜单组件 Vue Context Menu https://juejin.im/entry/5976d14751882507db6e839c