传送门

直接转田神的了:

Milking Grid
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 6665   Accepted: 2824

Description

Every morning when they are milked, the Farmer John's cows form a rectangular grid that is R (1 <= R <= 10,000) rows by C (1 <= C <= 75) columns. As we all know, Farmer John is quite the expert on cow behavior, and is currently writing a book about feeding behavior in cows. He notices that if each cow is labeled with an uppercase letter indicating its breed, the two-dimensional pattern formed by his cows during milking sometimes seems to be made from smaller repeating rectangular patterns.

Help FJ find the rectangular unit of smallest area that can be repetitively tiled to make up the entire milking grid. Note that the dimensions of the small rectangular unit do not necessarily need to divide evenly the dimensions of the entire milking grid, as indicated in the sample input below.

Input

* Line 1: Two space-separated integers: R and C

* Lines 2..R+1: The grid that the cows form, with an uppercase letter denoting each cow's breed. Each of the R input lines has C characters with no space or other intervening character.

Output

* Line 1: The area of the smallest unit from which the grid is formed

Sample Input

2 5
ABABA
ABABA

Sample Output

2

Hint

The entire milking grid can be constructed from repetitions of the pattern 'AB'.

Source

USACO 2003 Fall

题目链接:http://poj.org/problem?id=2185

题目大意:给你一个r行c列的字符矩阵,令其一个子矩阵,使得这个子矩阵无限复制成的大矩阵包含原矩阵,现求这个子矩阵的最小尺寸

题目分析:1.把每行字符串看作一个整体对行求next数组
                  2.将矩阵转置
                  3.进行操作1,注意这里的行是原来的列,列是原来的行,相当于求原来列的next数组
                  4.求出len-next[len]即最小不重复子串的长度作为子矩形的边长

13892851 njczy2010 2185 Accepted 42452K 79MS G++ 1707B 2015-02-16 10:51:05
 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<string> #define N 100
#define M 10005
//#define mod 10000007
//#define p 10000007
#define mod2 1000000000
#define ll long long
#define LL long long
#define eps 1e-6
//#define inf 2147483647
#define maxi(a,b) (a)>(b)? (a) : (b)
#define mini(a,b) (a)<(b)? (a) : (b) using namespace std; int n,m;
char s[M][M];
char c[M][M];
int nexts[M];
int nextc[M];
int l;
int now; void get_nexts()
{
int i,j;
i=;j=-;nexts[]=-;
while(i<n)
{
if(j==- || strcmp(s[i],s[j])==){
i++;j++;nexts[i]=j;
}
else{
j=nexts[j];
}
}
} void get_nextc()
{
int i,j;
i=;j=-;nextc[]=-;
while(i<m)
{
if(j==- || strcmp(c[i],c[j])==){
i++;j++;nextc[i]=j;
}
else{
j=nextc[j];
}
}
} void ini()
{
int i,j;
for(i=;i<n;i++){
scanf("%s",s[i]);
}
for(j=;j<m;j++){
for(i=;i<n;i++){
c[j][i]=s[i][j];
}
c[j][i]='\0';
}
} void solve()
{
get_nexts();
get_nextc();
} void out()
{
printf("%d\n",(n-nexts[n])*(m-nextc[m]));
} int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
//scanf("%d",&T);
//for(int ccnt=1;ccnt<=T;ccnt++)
//while(T--)
//scanf("%d%d",&n,&m);
while(scanf("%d%d",&n,&m)!=EOF)
{
ini();
solve();
out();
}
return ;
}

POJ 2185 Milking Grid [二维KMP next数组]的更多相关文章

  1. Match:Milking Grid(二维KMP算法)(POJ 2185)

    奶牛矩阵 题目大意:给定一个矩阵,要你找到一个最小的矩阵,这个矩阵的无限扩充的矩阵包含着原来的矩阵 思路:乍一看这一题确实很那做,因为我们不知道最小矩阵的位置,但是仔细一想,如果我们能把矩阵都放在左上 ...

  2. POJ 2185 Milking Grid KMP循环节周期

    题目来源:id=2185" target="_blank">POJ 2185 Milking Grid 题意:至少要多少大的子矩阵 能够覆盖全图 比如例子 能够用一 ...

  3. poj 1195 Mobile phones(二维树状数组)

    树状数组支持两种操作: Add(x, d)操作:   让a[x]增加d. Query(L,R): 计算 a[L]+a[L+1]……a[R]. 当要频繁的对数组元素进行修改,同时又要频繁的查询数组内任一 ...

  4. POJ 2155 Matrix【二维树状数组+YY(区间计数)】

    题目链接:http://poj.org/problem?id=2155 Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissio ...

  5. POJ 2155 Matrix(二维树状数组+区间更新单点求和)

    题意:给你一个n*n的全0矩阵,每次有两个操作: C x1 y1 x2 y2:将(x1,y1)到(x2,y2)的矩阵全部值求反 Q x y:求出(x,y)位置的值 树状数组标准是求单点更新区间求和,但 ...

  6. POJ 2155 Matrix (二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17224   Accepted: 6460 Descripti ...

  7. POJ 2155 Matrix 【二维树状数组】(二维单点查询经典题)

    <题目链接> 题目大意: 给出一个初始值全为0的矩阵,对其进行两个操作. 1.给出一个子矩阵的左上角和右上角坐标,这两个坐标所代表的矩阵内0变成1,1变成0. 2.查询某个坐标的点的值. ...

  8. POJ 2155 Matrix (二维树状数组)题解

    思路: 没想到二维树状数组和一维的比只差了一行,update单点更新,query求和 这里的函数用法和平时不一样,query直接算出来就是某点的值,怎么做到的呢? 我们在更新的时候不止更新一个点,而是 ...

  9. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

随机推荐

  1. crontab 应用

    可以用crontab -e 添加要执行的命令. 命令执行的结果,无论是标准输出还是错误输出,都将以邮件形式发给用户.            添加的命令必须以如下格式:    * * * * * /co ...

  2. elastic-job lite 编程实战经验

    (继续贴一篇之前写的经验案例) elastic-job lite 编程实战经验 其实这是一次失败的项目,虽然最后还是做出来了,但是付出了很大代价.并且需要较深入的踩坑改造elastic-job,导致代 ...

  3. 新数据的GT列表

    制作新数据集时需要重新制作train_GT,test_GT 代码: dic = {} with open('/home/bnrc/all_image_GT.txt','r') as file: for ...

  4. StringMVCWeb接受前台值的几种方式

    这些决定与request   header   的Content-Type属性 1.通过@RequestParam @RequestParam Map<String, Object> pa ...

  5. CS193p Lecture 10 - Multithreating, UIScrollView

    Multithreating(多线程) 网络请求例子: NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL URLWithStrin ...

  6. ios之自定义UINavigationBar

    ios5 自定义导航条问题 在ios5之前的系统中,可以通过定义导航条类别的方式自定义导航条: @implementation UINavigationBar (CustomImage)- (void ...

  7. Xcode及Mac快捷键

    1. 文件 CMD + N: 新文件CMD + SHIFT + N: 新项目CMD + O: 打开CMD + S: 保存CMD + SHIFT + S: 另存为CMD + W: 关闭窗口CMD + S ...

  8. ZJOI2018游记Round1

    广告 ZJOI2018Round2游记 All Falls Down 非常感谢学弟学妹们捧场游记虽然这是一篇假游记 ZJOI Round1今天正式落下帷幕.在这过去的三天里遇到了很多朋友,见识了很多有 ...

  9. (40)zabbix监控web服务器访问性能

    zabbix web监控介绍 在host列可以看到web(0),在以前的版本这项是独立出来的,这个主要实现zabbix对web性能的监控,通过它可以了解web站点的可用性以及性能. 最终将各项指标绘制 ...

  10. Mac单机模式安装启动Kafka

    1.下载kafka,网址: https://www.apache.org/dyn/closer.cgi?path=/kafka/2.0.0/kafka_2.12-2.0.0.tgz 2.移动tar包到 ...