Problem Statement

There are N bags of biscuits. The i-th bag contains Ai biscuits.

Takaki will select some of these bags and eat all of the biscuits inside. Here, it is also possible to select all or none of the bags.

He would like to select bags so that the total number of biscuits inside is congruent to P modulo 2. How many such ways to select bags there are?

Constraints

  • 1≤N≤50
  • P=0 or 1
  • 1≤Ai≤100

Input

Input is given from Standard Input in the following format:

N P
A1 A2 ... AN

Output

Print the number of ways to select bags so that the total number of biscuits inside is congruent to P modulo 2.


Sample Input 1

Copy
2 0
1 3

Sample Output 1

Copy
2

There are two ways to select bags so that the total number of biscuits inside is congruent to 0 modulo 2:

  • Select neither bag. The total number of biscuits is 0.
  • Select both bags. The total number of biscuits is 4.

Sample Input 2

Copy
1 1
50

Sample Output 2

Copy
0

Sample Input 3

Copy
3 0
1 1 1

Sample Output 3

Copy
4

Two bags are distinguished even if they contain the same number of biscuits.


Sample Input 4

Copy
45 1
17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26

Sample Output 4

Copy
17592186044416
题意:数组中选出一些数字,相加求和%2==p,有多少种选取方式,可以一个也不选
解法:
1 首先数组统统%2处理
2 p=0 说明可以选取0 或者偶数个1,那么C(0的总数,选取0的个数)*(1的总数,选取1的个数)
3 p=1 说明可以选取0加奇数个1,一样的公式
 #include<bits/stdc++.h>
using namespace std;
int num[];
int p,n;
long long C(int n,int m)
{
if(n<m) return ;
long long ans=;
for(int i=;i<m;i++) ans=ans*(long long)(n-i)/(long long)(i+);
return ans;
}
long long A(int n,int m)
{
if(n<m) return ;
long long ans=;
for(int i=;i<m;i++) ans*=(long long)(n-i);
return ans;
}
int main(){ int Numz=;
int Numo=;
cin>>n>>p;
for(int i=;i<=n;i++){
cin>>num[i];
num[i]%=;
if(num[i]==){
Numz++;
}else{
Numo++;
}
}
long long ans=;
if(p==){
for(int i=;i<=Numz;i++){
long long pos=C(Numz,i);
for(int j=;j<=Numo;j+=){
long long base=C(Numo,j);
ans+=(pos*base);
}
}
cout<<ans<<endl;
}else if(p==){
for(int i=;i<=Numz;i++){
long long pos=C(Numz,i);
for(int j=;j<=Numo;j+=){
long long base=C(Numo,j);
ans+=(pos*base);
}
}
cout<<ans<<endl;
}
return ;
}

AtCoder Grand Contest 017 A的更多相关文章

  1. AtCoder Grand Contest 017 F - Zigzag

    题目传送门:https://agc017.contest.atcoder.jp/tasks/agc017_f 题目大意: 找出\(m\)个长度为\(n\)的二进制数,定义两个二进制数的大小关系如下:若 ...

  2. AtCoder Grand Contest 017 (VP)

    contest link Official Editorial 比赛体验--之前做题的时候感觉 AtCoder 挺快的,现在打了VP之后发现还是会挂的--而且不是加载缓慢或者载不出来,直接给你一个无法 ...

  3. AtCoder Grand Contest 017 题解

    A - Biscuits 题目: 给出 \(n\) 个物品,每个物品有一个权值. 问有多少种选取方式使得物品权值之和 \(\bmod\space 2\) 为 \(p\). \(n \leq 50\) ...

  4. AtCoder Grand Contest 017 迟到记

    晚上去操场上浪. 回来以后看到好几个人开着 \(AtCoder\) 在打代码. ... ... 今天有 \(AtCoder\) 比赛 ? 管它呢, \(Kito\) 在切西瓜,先吃西瓜... 然后看 ...

  5. AtCoder Grand Contest 017

    noi前橙名计划失败.全程搞C而gg…… A - Biscuits 题意:背包,求价值为奇/偶的方案数. #include<cstdio> #include<queue> #i ...

  6. 题解——ATCoder AtCoder Grand Contest 017 B - Moderate Differences(数学,构造)

    题面 B - Moderate Differences Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Stat ...

  7. AtCoder Grand Contest 017 B

    B - Moderate Differences Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Stateme ...

  8. AtCoder Grand Contest 017题解

    传送门 \(A\) 直接转移就是了 typedef long long ll; const int N=55; ll f[N][2];int a[N],n,p; int main(){ scanf(& ...

  9. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

随机推荐

  1. 把node加入master节点时,日志内容分析

    root@node1:~# kubeadm --token bggbum.mj3ogzhnm1wz07mj --discovery-token-ca-cert-hash sha256:8f02f833 ...

  2. 使用tencent协议发起临时会话

    调用默认浏览器打开链接tencent://message/?uin=QQ即可发起临时会话参数uin为目标QQ Java示例 import java.awt.Desktop; import java.n ...

  3. SQL 和 NoSQL 比较

    定义: SQL (Structured Query Language) 数据库,指关系型数据库.主要代表:SQL Server,Oracle,MySQL(开源),PostgreSQL(开源). NoS ...

  4. leetcode 677. Map Sum Pairs

    Implement a MapSum class with insert, and sum methods. For the method insert, you'll be given a pair ...

  5. (linux)wake_lock机制

      Android的休眠唤醒主要基于wake_lock机制,只要系统中存在任一有效的wake_lock,系统就不能进入深度休眠,但可以进行设备的浅度休眠操作.wake_lock一般在关闭lcd.tp但 ...

  6. 解决post乱码之web.xml

    <!-- 解决post乱码 --> <filter> <filter-name>characterEncodingFilter</filter-name> ...

  7. html5--6-55 动画效果-关键帧动画

    html5--6-55 动画效果-关键帧动画 实例 @charset="UTF-8"; div{ width: 150px; height: 150px; font-size: 2 ...

  8. unity anim(转)

    Unity4的Mecanim动画很早以前就有体验过,迟迟没有加到项目中有两个原因,今天写这篇博客来记录我在做的过程中遇到的一些问题. 1.以前的代码代码量比较多,修改起来动的地方太多了. 2.使用Me ...

  9. 虚拟机bridged, NAT and host-only网络区别

    In Linux, a network of each type is created when running vmware-config.pl. In Windows, they are auto ...

  10. css3 appearance 改变元素外观

    h5 input标签的默认样式去除: 去掉date类型<input>框的叉叉: ::-webkit-clear-button { -webkit-appearance: none; } 去 ...