Problem Statement

There are N bags of biscuits. The i-th bag contains Ai biscuits.

Takaki will select some of these bags and eat all of the biscuits inside. Here, it is also possible to select all or none of the bags.

He would like to select bags so that the total number of biscuits inside is congruent to P modulo 2. How many such ways to select bags there are?

Constraints

  • 1≤N≤50
  • P=0 or 1
  • 1≤Ai≤100

Input

Input is given from Standard Input in the following format:

N P
A1 A2 ... AN

Output

Print the number of ways to select bags so that the total number of biscuits inside is congruent to P modulo 2.


Sample Input 1

Copy
2 0
1 3

Sample Output 1

Copy
2

There are two ways to select bags so that the total number of biscuits inside is congruent to 0 modulo 2:

  • Select neither bag. The total number of biscuits is 0.
  • Select both bags. The total number of biscuits is 4.

Sample Input 2

Copy
1 1
50

Sample Output 2

Copy
0

Sample Input 3

Copy
3 0
1 1 1

Sample Output 3

Copy
4

Two bags are distinguished even if they contain the same number of biscuits.


Sample Input 4

Copy
45 1
17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26

Sample Output 4

Copy
17592186044416
题意:数组中选出一些数字,相加求和%2==p,有多少种选取方式,可以一个也不选
解法:
1 首先数组统统%2处理
2 p=0 说明可以选取0 或者偶数个1,那么C(0的总数,选取0的个数)*(1的总数,选取1的个数)
3 p=1 说明可以选取0加奇数个1,一样的公式
 #include<bits/stdc++.h>
using namespace std;
int num[];
int p,n;
long long C(int n,int m)
{
if(n<m) return ;
long long ans=;
for(int i=;i<m;i++) ans=ans*(long long)(n-i)/(long long)(i+);
return ans;
}
long long A(int n,int m)
{
if(n<m) return ;
long long ans=;
for(int i=;i<m;i++) ans*=(long long)(n-i);
return ans;
}
int main(){ int Numz=;
int Numo=;
cin>>n>>p;
for(int i=;i<=n;i++){
cin>>num[i];
num[i]%=;
if(num[i]==){
Numz++;
}else{
Numo++;
}
}
long long ans=;
if(p==){
for(int i=;i<=Numz;i++){
long long pos=C(Numz,i);
for(int j=;j<=Numo;j+=){
long long base=C(Numo,j);
ans+=(pos*base);
}
}
cout<<ans<<endl;
}else if(p==){
for(int i=;i<=Numz;i++){
long long pos=C(Numz,i);
for(int j=;j<=Numo;j+=){
long long base=C(Numo,j);
ans+=(pos*base);
}
}
cout<<ans<<endl;
}
return ;
}

AtCoder Grand Contest 017 A的更多相关文章

  1. AtCoder Grand Contest 017 F - Zigzag

    题目传送门:https://agc017.contest.atcoder.jp/tasks/agc017_f 题目大意: 找出\(m\)个长度为\(n\)的二进制数,定义两个二进制数的大小关系如下:若 ...

  2. AtCoder Grand Contest 017 (VP)

    contest link Official Editorial 比赛体验--之前做题的时候感觉 AtCoder 挺快的,现在打了VP之后发现还是会挂的--而且不是加载缓慢或者载不出来,直接给你一个无法 ...

  3. AtCoder Grand Contest 017 题解

    A - Biscuits 题目: 给出 \(n\) 个物品,每个物品有一个权值. 问有多少种选取方式使得物品权值之和 \(\bmod\space 2\) 为 \(p\). \(n \leq 50\) ...

  4. AtCoder Grand Contest 017 迟到记

    晚上去操场上浪. 回来以后看到好几个人开着 \(AtCoder\) 在打代码. ... ... 今天有 \(AtCoder\) 比赛 ? 管它呢, \(Kito\) 在切西瓜,先吃西瓜... 然后看 ...

  5. AtCoder Grand Contest 017

    noi前橙名计划失败.全程搞C而gg…… A - Biscuits 题意:背包,求价值为奇/偶的方案数. #include<cstdio> #include<queue> #i ...

  6. 题解——ATCoder AtCoder Grand Contest 017 B - Moderate Differences(数学,构造)

    题面 B - Moderate Differences Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Stat ...

  7. AtCoder Grand Contest 017 B

    B - Moderate Differences Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Stateme ...

  8. AtCoder Grand Contest 017题解

    传送门 \(A\) 直接转移就是了 typedef long long ll; const int N=55; ll f[N][2];int a[N],n,p; int main(){ scanf(& ...

  9. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

随机推荐

  1. Android的onMeasure方法

    在Android开发中,当Android原生控件不能满足我们的需求的时候,就需要自定义View.View在屏幕上绘制出来先要经过measure(计算)和layout(布局). 什么时候调用onMeas ...

  2. 从数据源拉取数据,将数据内容与一组搜索项做比对 go func() chanel

    https://github.com/goinaction/code [root@hadoop3 sample]# go run main.go 2018/07/30 17:45:39 Registe ...

  3. IOS中调用系统拨打电话发送短信

    一.调用打电话界面 [[UIApplication sharedApplication] openURL:[NSURL URLWithString:[NSString stringWithFormat ...

  4. Android上的水果忍者刀锋效果(JAVA实现)

    显示刀锋的View package com.wbhuang.myninjia; import java.util.ArrayList; import java.util.List; import an ...

  5. (C)理解#define write(b,addr) (void)((*(volatile unsigned int *) (addr)) = (b))

      理解 #define write(b,addr) (void)((*(volatile unsigned int *) (addr)) = (b)) 嵌入式系统编程,要求程序员能够利用C语言访问固 ...

  6. VMWare Workstation 配置docker多macvlan网络方法

    VMWare Workstation 配置docker多macvlan网络方法 答案就是.....换VirtualBox 噗... VMWare Workstation host-only网络,三台虚 ...

  7. HDU2102 A计划 —— BFS

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2102 A计划 Time Limit: 3000/1000 MS (Java/Others)    Me ...

  8. Oracle :多实例切换

    Connecting to 10.1.4.21:22...Connection established.To escape to local shell, press 'Ctrl+Alt+]'. La ...

  9. Oracle :修改数据库服务器字符集

    最近,有现场反应,程序显示乱码.感觉很奇怪,该系统已经卖出去无数了.肯定是现场数据库字符集有问题,经过查看, 现场环境: window系统,oracle10g. 我们要求的数据库字符集是AL32UTF ...

  10. 【POJ 1961】 Period

    [题目链接] 点击打开链接 [算法] KMP 和POJ2406很像 [代码] #include <algorithm> #include <bitset> #include & ...