Count Numbers
Count Numbers
时间限制: 8 Sec 内存限制: 128 MB
题目描述
However we all know the number of this kind of integers are unlimited. So she decides to sum up all these numbers whose each digit is non-zero.
Since the answer could be large, she only needs the remainder when the answer divided by a given integer p.
输入
For each test case, a line consisting of three integers a, b (1 ≤ a, b ≤ 20) and p (2 ≤ p ≤ 109 ) describes the restriction of the digit sum and the given integer p.
输出
Here we provide an explanation of the following sample output. All integers satisfying the restriction in the input are 4, 13, 31, 22, 121, 112, 211 and 1111. The sum of them all is 4 + 13 + 31 + 22 + 121 + 112 + 211 + 1111 = 1625 and that is exactly the sample output.
样例输入
5
2 1 1000000
3 1 1000000
2 2 1000000
3 3 1000000
10 1 1000000
样例输出
13
147
1625
877377
935943
题意:求十进制下各个位上的数字和为n的数的总和。
分析:首先n很大,要用__int128来存,其次要能求出关于n的递推式。分析n=k的情况,我们尝试来构造出这些满足条件的数。如果这个数的最后一位为1,那么就需要求出所有k-1的答案数字,然后在其最后加上1,如果最后一位为2,那么就需要求出所有k-2的答案数字,然后在其最后加上2,。。。。。。。
一直可以分析到最后一位为9的情况。那么我们需要两个数组ans[i],cut[i],ans[i]代表n=i时的答案是多少,cut[i]代表n=i时满足数字和是i的数字有多少个。因此就可以推出递推公式:cut[i]=sum(cut[i-j]){1<=j<=9},ans[i]=sum(10*ans[i-j]+j*cut[i-j]){1<=j<=9}。
有了递推式就可以套矩阵快速幂了,这里要注意矩阵要开18*18的,这样方便转移状态。
还有要注意的就是矩阵最好写成int类型的,以防超时。(顺便mark一下加取模和乘取模的函数)。
最后一点就是矩阵乘法可以放弃以往的一行乘一列的写法,用一种新的写法,这样可以省下不少时间。
#include<bits/stdc++.h>
//#define __int128 long long
using namespace std;
long long p=1e9+; int addmod(int a,int b) //加法取模
{
return a+b>=p?a+b-p:a+b;
}
int mulmod(long long a,int b) //乘法取模
{
return a*b%p;
} struct Mat
{
int v[][]; Mat()
{
memset(v, , sizeof(v));
}
void init()
{
for (int i=; i<; i++)
v[i][i]=(int);
} };
Mat operator *(Mat a,Mat b)
{
Mat c;
for (int i=; i<; i++)
{
for (int j=; j<; j++) //换了一种写法,节省计算0的时间
if(a.v[i][j])
{
for (int k=; k<; k++)
if(b.v[j][k])c.v[i][k]=addmod(c.v[i][k],mulmod(a.v[i][j]%p,b.v[j][k]%p));
}
}
return c;
} Mat qmod(Mat a,__int128 k)
{
Mat c;
c.init(); while (k>)
{
if (k&) c=c*a;
a=a*a;
k>>=;
}
return c;
} int main()
{
long long ans[]= {},cut[]= {};
cut[]=;
for(int i=; i<=; i++)
for(int j=; j<=i; j++)ans[i]+=*ans[i-j]+j*cut[i-j],cut[i]+=cut[i-j]; Mat a,b; for(int i=; i<; i++)a.v[][i]=;
for(int i=; i<; i++)a.v[][i]=i-;
for(int i=; i<; i++)a.v[i][i-]=;
for(int i=; i<; i++)a.v[][i]=;
for(int i=; i<; i++)a.v[i][i-]=; int t;
scanf("%d",&t);
while(t--)
{
long long aa,bb;
scanf("%lld %lld %lld",&aa,&bb,&p); for(int i=; i<; i++)b.v[i][]=ans[-i]%p;
for(int i=; i<; i++)b.v[i][]=cut[-i]%p; __int128 now=aa;
for(int i=; i<=bb; i++)now=now*(__int128)aa; if(now<=)
{
printf("%lld\n",ans[now]%p);
continue;
} Mat c=qmod(a,now-)*b;
printf("%lld\n",c.v[][]); }
return ;
}
Count Numbers的更多相关文章
- Count Numbers(矩阵快速幂)
Count Numbers 时间限制: 8 Sec 内存限制: 128 MB提交: 43 解决: 19[提交] [状态] [讨论版] [命题人:admin] 题目描述 Now Alice want ...
- LC 357. Count Numbers with Unique Digits
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
- [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
- Count Numbers with Unique Digits
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
- Leetcode: Count Numbers with Unique Digits
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
- 357. Count Numbers with Unique Digits
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
- 【Leetcode】357. Count Numbers with Unique Digits
题目描述: Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. ...
- [Swift]LeetCode357. 计算各个位数不同的数字个数 | Count Numbers with Unique Digits
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
- Java [Leetcode 357]Count Numbers with Unique Digits
题目描述: Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. ...
随机推荐
- SQL2005中使用backup、restore来备份和恢复数据库
在SQL2005数据库中利用SQL语句进行数据备份与还原: 备份backup:backup database 数据库名称 tO disk = 备份路径例:BACKUP DATABASE test TO ...
- java中的堆与栈
Java 中的堆和栈 Java把内存划分成两种:一种是栈内存,一种是堆内存. 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配 . 当在一段代码块定义一个变量时,Java就在栈中 ...
- 国庆集训 || Wannafly Day1
网址:https://www.nowcoder.com/acm/contest/201#question A.签到 手速石头剪刀布 #include <cstdio> #include & ...
- POI创建生成excel及设置相关属性
简单的读写到excel中: import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io. ...
- Bootstrap 静态控件
当您需要在一个水平表单内表单标签后放置纯文本时,请在 <p> 上使用 class .form-control-static. 实例: <!DOCTYPE html><ht ...
- Broadcast BCM94322 用ubuntu修改ID
1.按这个教程的6楼做的http://bbs.pcbeta.com/viewthread-1324168-1-1.html.注意我先下载 的是ubuntu9.05版本,做U盘启动进live 模式,43 ...
- 文件操作-dd
Linux dd命令 用于读取.转换并输出数据. dd可从标准输入或文件中读取数据,根据指定的格式来转换数据,再输出到文件.设备或标准输出. 参数说明: if=文件名: 输入文件名,缺省为标准输入.即 ...
- (转)automaticallyAdjustsScrollViewInsets(个人认为iOS7中略坑爹的属性)
转自http://m.blog.csdn.net/blog/humingtao2013/27662093 automaticallyAdjustsScrollViewInsets(个人认为iOS7中略 ...
- linux 下常见命令
===============安装和登陆命令============================================================= Mount: 挂载命令.把存储介 ...
- centos 服务器配置
安装防火墙 安装Apache 安装MySQL 安装PHP 安装JDK 安装Tomcat 服务器上搭建Apache +MySQL+PHP +JDK +Tomcat环境,用的是Linux Centos7. ...