Description

背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。

Input

一个正整数 N。

Output

一个数,答案模 10000007 的值。

Sample Input

样例输入一
3

Sample Output

样例输出一
2

HINT

对于样例一,1*1*2=2;

数据范围与约定

对于 100% 的数据,N≤10^15

思路:数位dp,计算小于n并且sum(i)=k的i有多少个,设为u,则答案为pow(k,u),然后枚举k即可

#include<cstdio>

#include<iostream>

#include<cstring>

#include<map>

#define maxn 1000005

#define MOD 10000007

using namespace std;

long long num[maxn],h=0,dp[100][100][100][2];

long long dfs(long long pos,long long need,long long now,long long limit)

{

if(pos==0)return now==need;

int tmp=limit?num[pos]:1;

long long ans=0;

if(!limit&&dp[pos][need][now][limit]!=-1)

return dp[pos][need][now][limit];

for(int i=0;i<=tmp;i++)

{

ans=(ans+dfs(pos-1,need,now+i,limit&&(i==tmp)));

}

if (!limit)

dp[pos][need][now][limit]=ans;

return ans;

}

long long mpow(long long a,long long n)

{

long long ans=1;

a%=MOD;

while (n)

{

if (n%2) ans=(ans%MOD)*(a%MOD)%MOD;

n/=2;

a=(a%MOD)*(a%MOD)%MOD;

}

return ans;

}

int main()

{

long long n;

memset(dp,-1,sizeof(dp));

while(scanf("%lld",&n)!=EOF)

{

long long ans=1;h=0;

if(n==0){printf("0\n");continue;}

while(n>0){num[++h]=n&1;n>>=1;}

for(int i=1;i<=h;i++)

{

long long u=dfs(h,i,0,1);

long long v=mpow((long long)i,u%9988440+9988440);

ans=((ans%MOD)*(v%MOD))%MOD;

if(ans==6296768)

{

int zz=1;

}

}

printf("%lld\n",ans);

}

return 0;

}

BZOJ 3209: 花神的数论题【数位dp】的更多相关文章

  1. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  2. bzoj 3209 花神的数论题 —— 数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...

  3. BZOJ 3209 花神的数论题 数位DP+数论

    题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...

  4. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

  5. 【BZOJ3209】花神的数论题 数位DP

    [BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...

  6. bzoj 3209 花神的数论题——二进制下的数位dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 可以枚举 “1的个数是...的数有多少个” ,然后就是用组合数算在多少位里选几个1. ...

  7. [数位dp] bzoj 3209 花神的数论题

    题意:中文题. 思路:和普通数位dp一样,这里转换成二进制,然后记录有几个一. 统计的时候乘起来就好了. 代码: #include"cstdlib" #include"c ...

  8. [BZOJ 3209] 花神的数论题 【数位统计】

    题目链接: BZOJ - 3209 题目大意 设 f(x) 为 x 的二进制表示中 1 的个数.给定 n ,求 ∏ f(i)     (1 <= i <= n) . 题目分析 总体思路是枚 ...

  9. bzoj3209 花神的数论题——数位dp

    题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...

随机推荐

  1. {g2o}Installation Notes:ccmake

    main reference: http://www.cnblogs.com/gaoxiang12/p/3776107.html "注意libqglviewer-qt4-dev只在ubunt ...

  2. Java文件操作系列[1]——PDFBox实现分页提取PDF文本

    需求:用java分页提取PDF文本. PDFBox是一个很好的可以满足上述需求的开源工具. 1.PDF文档结构 要解析PDF文本,我们首先要了解PDF文件的结构. 关于PDF文档,最重要的几点: 一, ...

  3. uiviewcontroller 键盘不遮挡信息

    //添加监听事件 [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(keyboardWillShow: ...

  4. HTTPs与HTTP的性能

    (参考:https://blog.csdn.net/chinafire525/article/details/78911734 https://blog.csdn.net/hherima/articl ...

  5. robotframe处理日志中文问题

    unicode('${addr1.text}',"utf-8")

  6. jExcelAPI导入导出excel

      MS的电子表格(Excel)是Office的重要成员,是保存统计数据的一种常用格式.作为办公文档,势必要涉及到的电子文档的交换,Excel是一种在企业中非常通用的文件格式,打印和管理也比较方便.在 ...

  7. ios 点餐系统

    这个程序的主要界面就是一个TabBarController.总共三个标签,第一个是所有的可点的菜,第二个是已点的菜,第三个是可以留言或者查看所有留言. 下面是第一个页面: 右上角的i按钮是添加新菜,每 ...

  8. Clover启动mbr的win7/win8

    对以传统bios安装在mbr分区的win7/WIN8也可以使用EFI引导直接进入win.首先进win提取EFI引导文件,以管理员员身份运行cmd,输入如下命令 bcdboot c:\windows / ...

  9. passive event 解决方法

    为了让页面滚动的效果如丝般顺滑,从 chrome56 开始,在 window.document 和 body 上注册的 touchstart 和 touchmove 事件处理函数,会默认为是 pass ...

  10. C++ STL容器之 map

    map 是一种有序无重复的关联容器. 关联容器与顺序容器不同,他们的元素是按照关键字来保存和访问的,而顺序元素是按照它们在容器中的位置保存和访问的. map保存的是一种 key - value 的pa ...