Description

背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。

Input

一个正整数 N。

Output

一个数,答案模 10000007 的值。

Sample Input

样例输入一
3

Sample Output

样例输出一
2

HINT

对于样例一,1*1*2=2;

数据范围与约定

对于 100% 的数据,N≤10^15

思路:数位dp,计算小于n并且sum(i)=k的i有多少个,设为u,则答案为pow(k,u),然后枚举k即可

#include<cstdio>

#include<iostream>

#include<cstring>

#include<map>

#define maxn 1000005

#define MOD 10000007

using namespace std;

long long num[maxn],h=0,dp[100][100][100][2];

long long dfs(long long pos,long long need,long long now,long long limit)

{

if(pos==0)return now==need;

int tmp=limit?num[pos]:1;

long long ans=0;

if(!limit&&dp[pos][need][now][limit]!=-1)

return dp[pos][need][now][limit];

for(int i=0;i<=tmp;i++)

{

ans=(ans+dfs(pos-1,need,now+i,limit&&(i==tmp)));

}

if (!limit)

dp[pos][need][now][limit]=ans;

return ans;

}

long long mpow(long long a,long long n)

{

long long ans=1;

a%=MOD;

while (n)

{

if (n%2) ans=(ans%MOD)*(a%MOD)%MOD;

n/=2;

a=(a%MOD)*(a%MOD)%MOD;

}

return ans;

}

int main()

{

long long n;

memset(dp,-1,sizeof(dp));

while(scanf("%lld",&n)!=EOF)

{

long long ans=1;h=0;

if(n==0){printf("0\n");continue;}

while(n>0){num[++h]=n&1;n>>=1;}

for(int i=1;i<=h;i++)

{

long long u=dfs(h,i,0,1);

long long v=mpow((long long)i,u%9988440+9988440);

ans=((ans%MOD)*(v%MOD))%MOD;

if(ans==6296768)

{

int zz=1;

}

}

printf("%lld\n",ans);

}

return 0;

}

BZOJ 3209: 花神的数论题【数位dp】的更多相关文章

  1. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  2. bzoj 3209 花神的数论题 —— 数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...

  3. BZOJ 3209 花神的数论题 数位DP+数论

    题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...

  4. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

  5. 【BZOJ3209】花神的数论题 数位DP

    [BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...

  6. bzoj 3209 花神的数论题——二进制下的数位dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 可以枚举 “1的个数是...的数有多少个” ,然后就是用组合数算在多少位里选几个1. ...

  7. [数位dp] bzoj 3209 花神的数论题

    题意:中文题. 思路:和普通数位dp一样,这里转换成二进制,然后记录有几个一. 统计的时候乘起来就好了. 代码: #include"cstdlib" #include"c ...

  8. [BZOJ 3209] 花神的数论题 【数位统计】

    题目链接: BZOJ - 3209 题目大意 设 f(x) 为 x 的二进制表示中 1 的个数.给定 n ,求 ∏ f(i)     (1 <= i <= n) . 题目分析 总体思路是枚 ...

  9. bzoj3209 花神的数论题——数位dp

    题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...

随机推荐

  1. git的基本使用命令操作

    Linux操作命令行:    mkdir - 创建文件夹,    cd - 切换文件路径    pwd - 显示文件路径    ls -ah - 可以查看隐藏的文件夹名(.git)    cat 文件 ...

  2. LR中排序脚本

    /* * LoadRunner Java script. (Build: 670) * * Script Description: * */ import lrapi.lr; public class ...

  3. vijos 1190 繁忙的都市

    描述 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路 ...

  4. ABAP Netweaver, SAP Cloud Platform和Kubernetes的用户区分

    ABAP Dialog: Individual, interactive system access. System: Background processing and communication ...

  5. 补题—Codeforces Round #346 (Div. 2) _智商欠费系列

    这次的题目相对容易 但是智商依旧不够用 原因有三点 1.英文水平堪忧 2 逻辑不严密 3 细节掌握不够好 传送门 http://codeforces.com/contest/659 A 题目大意 圆环 ...

  6. ES6新增"Promise"可避免回调地狱

    Promise是一个构造函数,自己身上有all.reject.resolve这几个眼熟的方法,原型上有then.catch等同样很眼熟的方法. 那就new一个 var p = new Promise( ...

  7. struts2的多个文件上传

                成功效果图:                 上篇文章描述了单个文件的上传和配置,下面主要讲解下不同的地方: index.jsp <head> <script ...

  8. javascript的offset、client、scroll使用方法

    offsetTop 指元素距离上方或上层控件的位置,整型,单位像素. offsetLeft 指元素距离左方或上层控件的位置,整型,单位像素. offsetWidth 指元素控件自身的宽度,整型,单位像 ...

  9. NoSQL 之 Morphia 操作 MongoDB

    上两篇文章:http://www.cnblogs.com/hoojo/archive/2011/06/01/2066426.html http://www.cnblogs.com/hoojo/arch ...

  10. 如何让升级时AppleHDA不再折腾

    ---前提--- 1. 你得用 Clover 引导 (......) 2. 开启 kernelcache (开了也能 inject kext,还能patch kext,速度又快,为啥不开) 3. 你的 ...