洛谷 [P2216] 理想的正方形
二维单调队列
先横向跑一边单调队列,记录下每一行长度为n的区间的最值
在纵向跑一边单调队列,得出结果
注意,mi要初始化为一个足够大的数
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
int init() {
int rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <='9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return fh * rv;
}
const int MAXN = 2005;
int num[MAXN][MAXN], ma[MAXN][MAXN], mi[MAXN][MAXN], n, a, b, ans = 0x7fffffff;
struct ddque{
int que[MAXN<<3], head, tail;
void clear(bool opt){
que[0] = opt? 0: 0x7fffffff; //注意这里
head = tail = 0;
}
void insert(int x, bool opt){
if(!opt) {
while(que[tail] > x && tail >= head) tail--;
que[++tail] = x;
}else {
while(que[tail] < x && tail >= head) tail--;
que[++tail] = x;
}
}
void pop(int x){
if(que[head] == x) head++;
}
int query(){
return que[head];
}
}q1, q2;
int main() {
freopen("in.txt", "r", stdin);
memset(mi,0x7f,sizeof(mi));
a = init(); b = init(); n = init();
for(int i = 1 ; i <= a ; i++) {
for(int j = 1 ; j <=b ; j++) {
num[i][j] = init();
}
}
for(int i = 1 ; i <= a ; i++) {
q1.clear(0); q2.clear(1);
for(int j = 1 ; j <= n ; j++) {
q1.insert(num[i][j], 0);
q2.insert(num[i][j], 1);
}
ma[i][n] = q2.query();
mi[i][n] = q1.query();
for(int j = n + 1 ; j <= b ; j++) {
q1.insert(num[i][j], 0);
q2.insert(num[i][j], 1);
q1.pop(num[i][j - n]);
q2.pop(num[i][j - n]);
ma[i][j] = q2.query();
mi[i][j] = q1.query();
}
}
for(int j = n ; j <= b ; j++) {
q1.clear(0); q2.clear(1);
for(int i = 1 ; i <= n ; i++) {
q1.insert(mi[i][j], 0);
q2.insert(ma[i][j], 1);
}
ans = min(ans, q2.query() - q1.query());
for(int i = n + 1 ; i <= a ; i++) {
q1.insert(mi[i][j], 0);
q2.insert(ma[i][j], 1);
q1.pop(mi[i - n][j]);
q2.pop(ma[i - n][j]);
ans = min(ans, q2.query() - q1.query());
}
}
cout<<ans<<endl;
fclose(stdin);
return 0;
}
洛谷 [P2216] 理想的正方形的更多相关文章
- 洛谷P2216 理想的正方形(单调队列)
洛谷P2216 理想的正方形 题目链接 思路: 直接暴力显然不可行,可以发现每一个矩形向右边扩展时是一列一列增加,于是可以想到单调队列,用数组来维护当前每列的最大值.因为行也有限制,所以还要用一个单调 ...
- 洛谷P2216 理想的正方形
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...
- 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP
洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...
- 洛谷 P2216 [HAOI2007]理想正方形
洛谷 巨说这是一道单调队列好题,但是我并不是用单调队列做的诶. 如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了. \(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\ ...
- 洛谷 P2216 [HAOI2007]理想的正方形
P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...
- 【洛谷P2216】[HAOI2007]理想的正方形
理想的正方形 [题目描述] 一个a*b的矩阵,从中取一个n*n的子矩阵,使所选矩阵中的最大数与最小数的差最小. 思路: 二维的滑动窗口 对于每行:用一个单调队列维护,算出每个长度为n的区间的最大值和最 ...
- 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列
题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...
- 洛谷P2216 HAOI2007 理想的正方形 (单调队列)
题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...
- 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解
算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...
随机推荐
- Codeforces Round #317 (Div. 2) C Lengthening Sticks (组合,数学)
一个合法的三角形的充要条件是a<b+c,其中a为最长的一边,可以考虑找出所有不满足的情况然后用总方案减去不合法的情况. 对于一个给定的总长度tl(一定要分完,因为是枚举tl,不分配的长度已经考虑 ...
- com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure
com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure 长时间没连接mysql断开了, ...
- 题解 CF440A 【Forgotten Episode】
博客阅读更好 虽然这道题是紫题,但实际难度应该是橙题吧 首先,看到标签…… 紫题?但题目也太…… 这道题教会我们不要看标签 好了,废话少说,看到楼下许多大佬都用了数组,但我觉得可以不用 为什么? 我也 ...
- POI导出excel项目(webwork)实例
后台action: public String exportExcel(){ this.setUserList(this.getUserService().findUserInfosByGroupID ...
- 高度自适应的bug
今天在整理之前IFEde作业,发现有个简历的效果好像没实现.于是想把样式改成作业要求的那样. 作业要求是这样的: 右边栏昨晚高度是839px,我想把左边栏做成高度自适应的.但是没成功.现在我把这个问题 ...
- 数据库事务ACID和事务的隔离级别
借鉴:https://blog.csdn.net/zh521zh/article/details/69400053和https://blog.csdn.net/May_3/article/detail ...
- 【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作
好像还有个名字叫做“极大化”? Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的 ...
- 简单的Redis数据迁移
dump迁移 1.安装redis-dump工具 sudo apt-get install ruby rubygems ruby-devel -y gem sources --add http://ge ...
- (41)zabbix监控api接口性能及可用性 天气预报api为例
现在各种应用都走api,例如淘宝,天气预报等手机.pad客户端都是走api的,那么平时也得对这些api做监控了.怎么做呢?zabbix的web监控是不二选择了.今天就以天气预报api作为一个例子. 天 ...
- php数据查询之基础查询
---恢复内容开始--- 数据查询语言(Data Query Language) 基本查询 语法形式: select [all | distinct ] 字段或者表达式列表 [from子句] [whe ...