[Luogu 1966] noip13 火柴排队

Problem

涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度。 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2

其中 ai 表示第一列火柴中第 i 个火柴的高度,bi 表示第二列火柴中第 i 个火柴的高度。

每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。

输入输出格式

输入格式:

共三行,第一行包含一个整数 n,表示每盒中火柴的数目。

第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。

第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。

输出格式:

输出共一行,包含一个整数,表示最少交换次数对 99,999,997 取模的结果。

输入输出样例

输入样例#1:

4
2 3 1 4
3 2 1 4
输出样例#1:

1
输入样例#2:

4
1 3 4 2
1 7 2 4
输出样例#2:

2

说明

【输入输出样例说明1】

最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。

【输入输出样例说明2】

最小距离是 10,最少需要交换 2 次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。

【数据范围】

对于 10%的数据, 1 ≤ n ≤ 10;

对于 30%的数据,1 ≤ n ≤ 100;

对于 60%的数据,1 ≤ n ≤ 1,000;

对于 100%的数据,1 ≤ n ≤ 100,000,0 ≤火柴高度≤ maxlongint

Solution:

因为题目要让a[i]-b[i]的平方和最小,就是要使a[i]和b[i]越接近越好

那么我们可以先贪心的想一想,

如果b[1]是b数组最小的,那么与之配对的a[1]是不是也应该最小才能保证对答案的影响最小

所以说两列火柴对应的两根火柴在各列中高度的排名应该相同,

证明就是将"若a1>a2且b1>b2,则有(a1-b1)^2+(a2-b2)^2<(a2-b1)^2+(a1-b2)^2"这个式子展开就可以得到

那么这样我们就可以先把b进行排序,同时找到a数组所对应的顺序,

最后在对a数组中找逆序对就是答案

然后求逆序对可以用归并排序或者树状数组实现

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=,p=;
struct xint{int v,num;}a[N],b[N];
int n,c[N],q[N],ans;
int ask(int x,int res=){
while (x){res+=c[x]; x-=x&-x;}
return res;
}
void add(int x){
while (x<=n){c[x]++; x+=x&-x;}
}
bool cmp(xint x,xint y){return x.v<y.v;}
int main(){
scanf("%d",&n);
for (int i=;i<=n;++i) scanf("%d",&a[i].v),a[i].num=i;
for (int i=;i<=n;++i) scanf("%d",&b[i].v),b[i].num=i;
sort(a+,a+n+,cmp); sort(b+,b+n+,cmp);
for (int i=;i<=n;++i) q[a[i].num]=b[i].num;
for (int i=n;i>=;--i){
(ans+=ask(q[i]-))%=p; add(q[i]);
}
printf("%d",ans);
}

[Luogu 1966] noip13 火柴排队的更多相关文章

  1. luogu P1966 火柴排队 (逆序对)

    luogu P1966 火柴排队 题目链接:https://www.luogu.org/problemnew/show/P1966 显然贪心的想,排名一样的数相减是最优的. 证明也很简单. 此处就不证 ...

  2. luoguP1966 火柴排队(NOIP2013)(归并排序)

    luogu P1966 火柴排队 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include ...

  3. Codevs 3286 火柴排队 2013年NOIP全国联赛提高组 树状数组,逆序对

    题目:http://codevs.cn/problem/3286/ 3286 火柴排队  2013年NOIP全国联赛提高组  时间限制: 1 s   空间限制: 128000 KB   题目等级 : ...

  4. 洛谷P1966 【火柴排队】

    题解 P1966 [火柴排队] 说明: 在数学中有个公式: (a1-b1)^2+(a2-b2)^2<(a2-b1)^2+(a1-b2)^2 (你可以自己试着证一下) 两列火柴对应的两根火柴在各列 ...

  5. [树状数组+逆序对][NOIP2013]火柴排队

    火柴排队 题目描述 涵涵有两盒火柴,每盒装有n根火柴,每根火柴都有一个高度.现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑ (ai-bi)2,i=1,2,3,. ...

  6. 【刷题】洛谷 P1966 火柴排队

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...

  7. [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)

    [NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...

  8. LOJ2609. NOIP2013 火柴排队 【树状数组】

    LOJ2609. NOIP2013 火柴排队 LINK 题目大意: 给你两个数列,定义权值∑i=1(ai−bi)^2 问最少的操作次数,最小化权值 首先需要发现几个性质 最小权值满足任意i,j不存在a ...

  9. 洛谷 P1966 火柴排队 解题报告

    P1966 火柴排队 题目描述 涵涵有两盒火柴,每盒装有 \(n\) 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: \(\s ...

随机推荐

  1. Python学习之前

    编程语言的分类: 1.机器语言:直接以0和1编写指令代码,计算机能直接识别处理: 特点:运行速度最快,太复杂,开发效率低,可执行操作最多. 2.汇编语言:本质上依然是机器语言,用英文代替0和1,更容易 ...

  2. BZOJ 1827 洛谷 2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gather

    [题解] 很容易想到暴力做法,枚举每个点,然后对于每个点O(N)遍历整棵树计算答案.这样整个效率是O(N^2)的,显然不行. 我们考虑如果已知当前某个点的答案,如何快速计算它的儿子的答案. 显然选择它 ...

  3. java List 数组删除元素

    在 java 中,ArrayList 是一个很常用的类,在编程中经常要对 ArrayList 进行增.删.改.查操作.之前在学校时一直认为删除操作是最简单的,现在才越发觉得自己愚蠢.只需要设置好预期条 ...

  4. 工作用linux命令汇总

    mv [filepath] [filepath] 移动,前者位置移动到后面位置,也可以用来重命名(mv test.txt newname.txt) cp [filepath] [filepath] 复 ...

  5. JavaSE 学习笔记之集合框架(十八)

    集合框架:,用于存储数据的容器. 特点: 1:对象封装数据,对象多了也需要存储.集合用于存储对象. 2:对象的个数确定可以使用数组,但是不确定怎么办?可以用集合.因为集合是可变长度的. 集合和数组的区 ...

  6. poj 3237 树链剖分模板(用到线段树lazy操作)

    /* 本体在spoj375的基础上加了一些操作,用到线段树的lazy操作模板类型 */ #include<stdio.h> #include<string.h> #includ ...

  7. [USACO07OCT]障碍路线Obstacle Course

    题目描述 Consider an N x N (1 <= N <= 100) square field composed of 1 by 1 tiles. Some of these ti ...

  8. hello2 source analisis(notes)

    该hello2应用程序是一个Web模块,它使用Java Servlet技术来显示问候语和响应.使用文本编辑器查看应用程序文件,也可以使用NetBeans IDE. 此应用程序的源代码位于 _tut-i ...

  9. RMAN RECOVERY

    Data Recovery Advisor The health monitor and the ADR The capabilities and limitations of DRA using t ...

  10. J2SE基础:5.面向对象的特性2

    Final的使用 final在类之前 表示该类是终于类.表示该类不能再被继承. final在方法之前 表示该方法是终于方法,该方法不能被不论什么派生的子类覆盖. final在变量之前 表示变量的值在初 ...