严格次小生成树模板

算法流程:

先用克鲁斯卡尔求最小生成树,然后给这个最小生成树树剖一下,维护边权转点权,维护最大值和严格次大值。

然后枚举没有被选入最小生成树的边,在最小生成树上查一下这条边的两端点的路径上的最长边,如果最长边等于枚举到的边的边权,那么选次长边(没有次长边的话直接跳过),然后在最小生成树的权值上减去路径上最/次长边,加上当前枚举的边的边权

因为如果加入枚举的边的,那么就形成了一个环,需要断开一条边

注意一开始单点次小值赋为0

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
using namespace std;
const int N=300005;
int n,m,h[N],cnt,f[N],con,fa[N],si[N],hs[N],de[N],fr[N],id[N],rl[N],va[N],tmp;
long long ans=1e18,sum;
bool mk[N];
struct qwe
{
int ne,to,va;
}e[N<<1];
struct xds
{
int l,r,mx,cmx;
}t[N<<1];
struct bian
{
int u,v,w;
}a[N*3];
bool cmp(const bian &a,const bian &b)
{
return a.w<b.w;
}
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
inline int zhao(int x)
{
return x==f[x]?x:f[x]=zhao(f[x]);
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void dfs1(int u,int fat)
{
fa[u]=fat;
de[u]=de[fat]+1;
si[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fat)
{
va[e[i].to]=e[i].va;
dfs1(e[i].to,u);
si[u]+=si[e[i].to];
if(si[e[i].to]>si[hs[u]])
hs[u]=e[i].to;
}
}
void dfs2(int u,int top)
{
fr[u]=top;
id[u]=++tmp;
rl[tmp]=u;
if(!hs[u])
return;
dfs2(hs[u],top);
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=hs[u]&&e[i].to!=fa[u])
dfs2(e[i].to,e[i].to);
}
void build(int ro,int l,int r)
{
t[ro].l=l,t[ro].r=r;
if(l==r)
{
t[ro].mx=va[rl[l]];
return;
}
int mid=(l+r)>>1;
build(ro<<1,l,mid);
build(ro<<1|1,mid+1,r);
t[ro].mx=max(t[ro<<1].mx,t[ro<<1|1].mx);
if(t[ro<<1].mx==t[ro<<1|1].mx)
t[ro].cmx=max(t[ro<<1].cmx,t[ro<<1|1].cmx);
else
t[ro].cmx=min(t[ro<<1].mx,t[ro<<1|1].mx);
}
int ques(int ro,int l,int r,int w)
{
if(t[ro].l==l&&t[ro].r==r)
return t[ro].mx==w?t[ro].cmx:t[ro].mx;
int mid=(t[ro].l+t[ro].r)>>1;
if(r<=mid)
return ques(ro<<1,l,r,w);
else if(l>mid)
return ques(ro<<1|1,l,r,w);
else
return max(ques(ro<<1,l,mid,w),ques(ro<<1|1,mid+1,r,w));
}
int wen(int u,int v,int w)
{
int re=0;
while(fr[u]!=fr[v])
{
if(de[fr[u]]<de[fr[v]])
swap(u,v);
re=max(re,ques(1,id[fr[u]],id[u],w));
u=fa[fr[u]];
}
if(u!=v)
{
if(de[u]>de[v])
swap(u,v);
re=max(re,ques(1,id[u]+1,id[v],w));
}
return re;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
a[i].u=read(),a[i].v=read(),a[i].w=read();
sort(a+1,a+1+m,cmp);
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;i<=m&&con<n-1;i++)
{
int fu=zhao(a[i].u),fv=zhao(a[i].v);
if(fu!=fv)
{
f[fu]=fv,con++,sum+=a[i].w;
add(a[i].u,a[i].v,a[i].w),add(a[i].v,a[i].u,a[i].w);
mk[i]=1;
}
}
dfs1(1,0);
dfs2(1,1);
build(1,1,n);
for(int i=1;i<=m;i++)
if(!mk[i])
ans=min(ans,sum-wen(a[i].u,a[i].v,a[i].w)+a[i].w);
printf("%lld\n",ans);
return 0;
}

洛谷 P4180 【模板】严格次小生成树[BJWC2010]【次小生成树】的更多相关文章

  1. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

  2. 洛谷P4180【Beijing2010组队】次小生成树Tree

    题目描述: 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还 ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

  5. 洛谷P4180 [BJWC2010]次小生成树(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

  6. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  7. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  8. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  9. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  10. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

随机推荐

  1. 圆角计算 Shader

    圆角的计算 在Shader中,我们使用UV坐标来计算需要显示的部分和不需要显示的部分,使用透明来处理显示与不显示.UV坐标如下图1,我们将坐标平移到图2位置,面片的UV坐标原点在面片中心,UV坐标范围 ...

  2. 【03】emmet系列之CSS语法

    [01]emmet系列之基础介绍 [02]emmet系列之HTML语法 [03]emmet系列之CSS语法 [04]emmet系列之编辑器 [05]emmet系列之各种缩写   单位: 有几个常用值别 ...

  3. Leetcode 179.最大数

    最大数 给定一组非负整数,重新排列它们的顺序使之组成一个最大的整数. 示例 1: 输入: [10,2] 输出: 210 示例 2: 输入: [3,30,34,5,9] 输出: 9534330 impo ...

  4. HDU-1272小希的迷宫,并查集?其实不用并查集;

    小希的迷宫                                                                                               ...

  5. 用mycat做读写分离:基于 MySQL主从复制

    版权声明:本文为博主原创文章,未经博主允许不得转载. mycat是最近很火的一款国人发明的分布式数据库中间件,它是基于阿里的cobar的基础上进行开发的 搭建之前我们先要配置MySQL的主从复制,这个 ...

  6. 视图 v$sql,v$sqlarea,$sqltext,v$sqltext_with_newlines 的差异

    http://blog.csdn.net/leshami/article/details/8658205 视图v$sql,v$sqlarea,v$sqltext,v$sqltext_with_newl ...

  7. hihocoder #1034 : 毁灭者问题 平衡树(set)+线段树

    #1034 : 毁灭者问题 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在 Warcraft III 之冰封王座中,毁灭者是不死族打三本后期时的一个魔法飞行单位. 毁 ...

  8. Linux下汇编语言学习笔记60 ---

    这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...

  9. Max Num

    Problem Description There are some students in a class, Can you help teacher find the highest studen ...

  10. [bzoj4712]洪水_动态dp

    洪水 bzoj-4712 题目大意:给定一棵$n$个节点的有根树.每次询问以一棵节点为根的子树内,选取一些节点使得这个被询问的节点包含的叶子节点都有一个父亲被选中,求最小权值.支持单点修改. 注释:$ ...