严格次小生成树模板

算法流程:

先用克鲁斯卡尔求最小生成树,然后给这个最小生成树树剖一下,维护边权转点权,维护最大值和严格次大值。

然后枚举没有被选入最小生成树的边,在最小生成树上查一下这条边的两端点的路径上的最长边,如果最长边等于枚举到的边的边权,那么选次长边(没有次长边的话直接跳过),然后在最小生成树的权值上减去路径上最/次长边,加上当前枚举的边的边权

因为如果加入枚举的边的,那么就形成了一个环,需要断开一条边

注意一开始单点次小值赋为0

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
using namespace std;
const int N=300005;
int n,m,h[N],cnt,f[N],con,fa[N],si[N],hs[N],de[N],fr[N],id[N],rl[N],va[N],tmp;
long long ans=1e18,sum;
bool mk[N];
struct qwe
{
int ne,to,va;
}e[N<<1];
struct xds
{
int l,r,mx,cmx;
}t[N<<1];
struct bian
{
int u,v,w;
}a[N*3];
bool cmp(const bian &a,const bian &b)
{
return a.w<b.w;
}
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
inline int zhao(int x)
{
return x==f[x]?x:f[x]=zhao(f[x]);
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void dfs1(int u,int fat)
{
fa[u]=fat;
de[u]=de[fat]+1;
si[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fat)
{
va[e[i].to]=e[i].va;
dfs1(e[i].to,u);
si[u]+=si[e[i].to];
if(si[e[i].to]>si[hs[u]])
hs[u]=e[i].to;
}
}
void dfs2(int u,int top)
{
fr[u]=top;
id[u]=++tmp;
rl[tmp]=u;
if(!hs[u])
return;
dfs2(hs[u],top);
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=hs[u]&&e[i].to!=fa[u])
dfs2(e[i].to,e[i].to);
}
void build(int ro,int l,int r)
{
t[ro].l=l,t[ro].r=r;
if(l==r)
{
t[ro].mx=va[rl[l]];
return;
}
int mid=(l+r)>>1;
build(ro<<1,l,mid);
build(ro<<1|1,mid+1,r);
t[ro].mx=max(t[ro<<1].mx,t[ro<<1|1].mx);
if(t[ro<<1].mx==t[ro<<1|1].mx)
t[ro].cmx=max(t[ro<<1].cmx,t[ro<<1|1].cmx);
else
t[ro].cmx=min(t[ro<<1].mx,t[ro<<1|1].mx);
}
int ques(int ro,int l,int r,int w)
{
if(t[ro].l==l&&t[ro].r==r)
return t[ro].mx==w?t[ro].cmx:t[ro].mx;
int mid=(t[ro].l+t[ro].r)>>1;
if(r<=mid)
return ques(ro<<1,l,r,w);
else if(l>mid)
return ques(ro<<1|1,l,r,w);
else
return max(ques(ro<<1,l,mid,w),ques(ro<<1|1,mid+1,r,w));
}
int wen(int u,int v,int w)
{
int re=0;
while(fr[u]!=fr[v])
{
if(de[fr[u]]<de[fr[v]])
swap(u,v);
re=max(re,ques(1,id[fr[u]],id[u],w));
u=fa[fr[u]];
}
if(u!=v)
{
if(de[u]>de[v])
swap(u,v);
re=max(re,ques(1,id[u]+1,id[v],w));
}
return re;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
a[i].u=read(),a[i].v=read(),a[i].w=read();
sort(a+1,a+1+m,cmp);
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;i<=m&&con<n-1;i++)
{
int fu=zhao(a[i].u),fv=zhao(a[i].v);
if(fu!=fv)
{
f[fu]=fv,con++,sum+=a[i].w;
add(a[i].u,a[i].v,a[i].w),add(a[i].v,a[i].u,a[i].w);
mk[i]=1;
}
}
dfs1(1,0);
dfs2(1,1);
build(1,1,n);
for(int i=1;i<=m;i++)
if(!mk[i])
ans=min(ans,sum-wen(a[i].u,a[i].v,a[i].w)+a[i].w);
printf("%lld\n",ans);
return 0;
}

洛谷 P4180 【模板】严格次小生成树[BJWC2010]【次小生成树】的更多相关文章

  1. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

  2. 洛谷P4180【Beijing2010组队】次小生成树Tree

    题目描述: 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还 ...

  3. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  4. 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

  5. 洛谷P4180 [BJWC2010]次小生成树(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

  6. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  7. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  8. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  9. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  10. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

随机推荐

  1. vs2003 刷新项目失败。无法从服务器中检索文件夹信息

    环境: 操作系统:windows server 2003 开发工具:Visual stuadio 2003 FrameWork: 1.1 打开web项目的时候报错   提示 项目刷新失败,无法从服务器 ...

  2. Excel表格如何设置密码 Excel2003/2007/2010设置密码教程

    http://www.wordlm.com/special/2/ 经常使用Excel表格制作报表和一些数据后,我们会给Excel表格设置密码,这样可以很有效的防止数据被盗取.目前Office版本众多, ...

  3. [K/3Cloud] 创建一个单据转换插件

    概念: 创建一个业务单据转换插件,在单据转换的各个时点干预单据转换的相关逻辑控制. 示例: 新建一个类,继承自单据转换插件基类Kingdee.BOS.Core.Metadata.ConvertElem ...

  4. Linux下汇编语言学习笔记15 ---

    这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...

  5. [bzoj4281][ONTAK2015]Związek Harcerstwa Bajtockiego_倍增LCA

    Związek Harcerstwa Bajtockiego bzoj-4281 ONTAK-2015 题目大意:给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点.之后你将依次收到k ...

  6. 奥多朗WIFI 插座

    https://aoduolang.tmall.com/category-1089563810.htm?spm=a1z10.1-b.w11212542-12917613245.12.tTWFSc&am ...

  7. Linux下,PHP的SESSION不起作用的问题

    改动SESSION目录的权限就能够了. 先找到SESSION目录, 然后 chmod -R 777 /var/lib/php/session 假设没有此目录,则新建此目录 mkdir -R 777 / ...

  8. openstack (1)----- NTP 时间同步服务

    一.标准时间 1.地球分为东西十二个区域,共计24个时区 2.格林威治作为全球标准时间即(GMT时间),东时区以格林威治时区进行加,而西时区则进行减 3.地球的轨道并非正圆,在加上自传速度逐年递减,因 ...

  9. MariaDB基础操作

    MariaDB: MariaDB是MySQL源代码的一个分支,随着Oracle买下Sun,MySQL也落入了关系型数据库王者之手.在意识到Oracle会对MySQL许可做什么后便分离了出来(MySQL ...

  10. 【剑指Offer学习】【面试题31:连续子数组的最大和】

    题目:输入一个整型数组,数组里有正数也有负数.数组中一个或连续的多个整数组成一个子数组.求全部子数组的和的最大值.要求时间复杂度为O(n). 样例说明: 比如输入的数组为{1, -2, 3, 10, ...